Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling

Abstract

High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1β plays a role in insulin resistance, yet how IL-1β is induced by the fatty acids in an HFD, and how this alters insulin signaling, is unclear. We show that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1β and IL-18 production. This pathway involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and unc-51–like kinase-1 (ULK1) autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1β affects insulin sensitivity through tumor necrosis factor–independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Palmitate activates NLRP3-ASC inflammasome.
Figure 2: Palmitate induces IL-1β and caspase-1 processing, which is dependent on NLRP3 and ASC.
Figure 3: Palmitate-induced inflammasome activation requires ROS.
Figure 4: Palmitate-induced inflammasome activation involves AMPK.
Figure 5: Palmitate-induced AMPK inactivation leads to defective autophagy and the generation of mitochondrial ROS.
Figure 6: Inflammasome-generated IL-1β inhibits insulin signaling in vitro.
Figure 7: IL-1β and TNF cooperatively mediate insulin resistance in vivo.
Figure 8: The NLRP3-ASC inflammasome promotes insulin resistance in vivo.

Similar content being viewed by others

References

  1. Hotamisligil, G.S. Inflammation and metabolic disorders. Nature 444, 860–867 (2006).

    Article  CAS  Google Scholar 

  2. Maedler, K. et al. Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110, 851–860 (2002).

    Article  CAS  Google Scholar 

  3. Spranger, J. et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes 52, 812–817 (2003).

    Article  CAS  Google Scholar 

  4. Jager, J., Gremeaux, T., Cormont, M., Le Marchand-Brustel, Y. & Tanti, J.F. Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148, 241–251 (2007).

    Article  CAS  Google Scholar 

  5. Lagathu, C. et al. Long-term treatment with interleukin-1beta induces insulin resistance in murine and human adipocytes. Diabetologia 49, 2162–2173 (2006).

    Article  CAS  Google Scholar 

  6. Larsen, C.M. et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N. Engl. J. Med. 356, 1517–1526 (2007).

    Article  CAS  Google Scholar 

  7. Mandrup-Poulsen, T., Pickersgill, L. & Donath, M.Y. Blockade of interleukin 1 in type 1 diabetes mellitus. Nat. Rev. Endocrinol. 6, 158–166 (2010).

    Article  CAS  Google Scholar 

  8. Zhou, R., Tardivel, A., Thorens, B., Choi, I. & Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 11, 136–140 (2010).

    Article  CAS  Google Scholar 

  9. Masters, S.L. et al. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat. Immunol. 11, 897–904 (2010).

    Article  CAS  Google Scholar 

  10. Ting, J.P. et al. The NLR gene family: a standard nomenclature. Immunity 28, 285–287 (2008).

    Article  CAS  Google Scholar 

  11. Ahrén, B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat. Rev. Drug Discov. 8, 369–385 (2009).

    Article  Google Scholar 

  12. Boden, G. Interaction between free fatty acids and glucose metabolism. Curr. Opin. Clin. Nutr. Metab. Care 5, 545–549 (2002).

    Article  CAS  Google Scholar 

  13. Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    Article  CAS  Google Scholar 

  14. Nguyen, M.T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).

    Article  CAS  Google Scholar 

  15. Ting, J.P., Duncan, J.A. & Lei, Y. How the noninflammasome NLRs function in the innate immune system. Science 327, 286–290 (2010).

    Article  CAS  Google Scholar 

  16. Ting, J.P., Willingham, S.B. & Bergstralh, D.T. NLRs at the intersection of cell death and immunity. Nat. Rev. Immunol. 8, 372–379 (2008).

    Article  CAS  Google Scholar 

  17. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

    Article  CAS  Google Scholar 

  18. Bauernfeind, F.G. et al. Cutting edge: NF-κB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J. Immunol. 183, 787–791 (2009).

    Article  CAS  Google Scholar 

  19. Steinberg, G.R. & Kemp, B.E. AMPK in health and disease. Physiol. Rev. 89, 1025–1078 (2009).

    Article  CAS  Google Scholar 

  20. Wang, S. et al. AMPKα2 deletion causes aberrant expression and activation of NAD(P)H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circ. Res. 106, 1117–1128 (2010).

    Article  CAS  Google Scholar 

  21. Yang, Z., Kahn, B.B., Shi, H. & Xue, B.Z. Macrophage α1 AMP–activated protein kinase (α1AMPK) antagonizes fatty acid–induced inflammation through SIRT1. J. Biol. Chem. 285, 19051–19059 (2010).

    Article  CAS  Google Scholar 

  22. Woods, A. et al. Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constitutively active and dominant negative forms of the kinase. Mol. Cell. Biol. 20, 6704–6711 (2000).

    Article  CAS  Google Scholar 

  23. Eisenbarth, S.C., Colegio, O.R., O'Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453, 1122–1126 (2008).

    Article  CAS  Google Scholar 

  24. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11, 385–393 (2010).

    Article  CAS  Google Scholar 

  25. Zhou, R., Yazdi, A.S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–225 (2011).

    Article  CAS  Google Scholar 

  26. Nakahira, K. et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12, 222–230 (2011).

    Article  CAS  Google Scholar 

  27. Egan, D.F. et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 331, 456–461 (2011).

    Article  CAS  Google Scholar 

  28. Kim, J., Kundu, M., Viollet, B. & Guan, K.L. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 13, 132–141 (2011).

    Article  CAS  Google Scholar 

  29. Levine, B., Mizushima, N. & Virgin, H.W. Autophagy in immunity and inflammation. Nature 469, 323–335 (2011).

    Article  CAS  Google Scholar 

  30. Klionsky, D.J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4, 151–175 (2008).

    Article  CAS  Google Scholar 

  31. Xu, Y. et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity. Immunity 27, 135–144 (2007).

    Article  CAS  Google Scholar 

  32. Roden, M. Mechanisms of disease: hepatic steatosis in type 2 diabetes–pathogenesis and clinical relevance. Nat. Clin. Pract. Endocrinol. Metab. 2, 335–348 (2006).

    Article  CAS  Google Scholar 

  33. Furuhashi, M. & Hotamisligil, G.S. Fatty acid-binding proteins: role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov. 7, 489–503 (2008).

    Article  CAS  Google Scholar 

  34. Zenewicz, L.A. et al. Interleukin-22 but not interleukin-17 provides protection to hepatocytes during acute liver inflammation. Immunity 27, 647–659 (2007).

    Article  CAS  Google Scholar 

  35. Hotamisligil, G.S. et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-alpha- and obesity-induced insulin resistance. Science 271, 665–668 (1996).

    Article  CAS  Google Scholar 

  36. Uysal, K.T., Wiesbrock, S.M., Marino, M.W. & Hotamisligil, G.S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    Article  CAS  Google Scholar 

  37. Vandanmagsar, B. et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17, 179–188 (2011).

    Article  CAS  Google Scholar 

  38. Sabio, G. et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science 322, 1539–1543 (2008).

    Article  CAS  Google Scholar 

  39. Hotamisligil, G.S., Shargill, N.S. & Spiegelman, B.M. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259, 87–91 (1993).

    Article  CAS  Google Scholar 

  40. Brookheart, R.T., Michel, C.I. & Schaffer, J.E. As a matter of fat. Cell Metab. 10, 9–12 (2009).

    Article  CAS  Google Scholar 

  41. Savage, D.B., Petersen, K.F. & Shulman, G.I. Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol. Rev. 87, 507–520 (2007).

    Article  CAS  Google Scholar 

  42. Farese, R.V. Jr. & Walther, T.C. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell 139, 855–860 (2009).

    Article  CAS  Google Scholar 

  43. Saitoh, T. et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1β production. Nature 456, 264–268 (2008).

    Article  CAS  Google Scholar 

  44. Sanjuan, M.A. et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450, 1253–1257 (2007).

    Article  CAS  Google Scholar 

  45. Yang, L., Li, P., Fu, S., Calay, E.S. & Hotamisligil, G.S. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11, 467–478 (2010).

    Article  CAS  Google Scholar 

  46. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  47. Sutterwala, F.S. et al. Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24, 317–327 (2006).

    Article  CAS  Google Scholar 

  48. Solle, M. et al. Altered cytokine production in mice lacking P2X7 receptors. J. Biol. Chem. 276, 125–132 (2001).

    Article  CAS  Google Scholar 

  49. Shornick, L.P. et al. Mice deficient in IL-1β manifest impaired contact hypersensitivity to trinitrochlorobenzone. J. Exp. Med. 183, 1427–1436 (1996).

    Article  CAS  Google Scholar 

  50. Krutzik, P.O. & Nolan, G.P. Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling. Nat. Methods 3, 361–368 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Dixit (Genentech), R. Flavell (Yale University), B. Koller (University of North Carolina at Chapel Hill) and D. Chaplin (University of Alabama at Birmingham) for gene-deletion mice; H. Shi (Wake Forest University) and D. Carling (Imperial College) for AMPK constructs; K. Hua from the University of North Carolina Nutrition Obesity Research Center for metabolic studies; V. Madden from the University of North Carolina Microscopy Services Laboratory for TEM analysis; L. Li and S. Wang for technical support; R. Coleman and M. Su for critique of the manuscript; and G. Hotamisligil, L. Makowski and J. Suttles for discussions. Supported by the US National Institutes of Health (R37-AI029564-17 and CA-156330-01 to J.P.-Y.T.) and American Heart Association Mid-Atlantic Affiliate and the Cancer Research Institute (H.W.).

Author information

Authors and Affiliations

Authors

Contributions

H.W., D.G. and J.P.-Y.T. designed the experiments; H.W., D.G., Y.L., S.J., L.Z., M.T.-H.H. and W.J.B. performed experiments and provided intellectual input; J.P.-Y.T. supervised the study. H.W., D.G. and J.P.-Y.T. interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jenny P-Y Ting.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Table 1 (PDF 586 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, H., Gris, D., Lei, Y. et al. Fatty acid–induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12, 408–415 (2011). https://doi.org/10.1038/ni.2022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni.2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing