Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes

Abstract

Sirtuin 1 (Sirt1), a NAD+-regulated deacetylase with numerous known positive effects on cellular and whole-body metabolism, is expressed in the renal cortex and medulla. It is known to have protective effects against age-related disease, including diabetes. Here we investigated the protective role of Sirt1 in diabetic renal damage. We found that Sirt1 in proximal tubules (PTs) was downregulated before albuminuria occurred in streptozotocin-induced or obese (db/db) diabetic mice. PT-specific SIRT1 transgenic and Sirt1 knockout mice showed prevention and aggravation of the glomerular changes that occur in diabetes, respectively, and nondiabetic knockout mice exhibited albuminuria, suggesting that Sirt1 in PTs affects glomerular function. Downregulation of Sirt1 and upregulation of the tight junction protein Claudin-1 by SIRT1-mediated epigenetic regulation in podocytes contributed to albuminuria. We did not observe these phenomena in 5/6 nephrectomized mice. We also demonstrated retrograde interplay from PTs to glomeruli using nicotinamide mononucleotide (NMN) from conditioned medium, measurement of the autofluorescence of photoactivatable NMN and injection of fluorescence-labeled NMN. In human subjects with diabetes, the levels of SIRT1 and Claudin-1 were correlated with proteinuria levels. These results suggest that Sirt1 in PTs protects against albuminuria in diabetes by maintaining NMN concentrations around glomeruli, thus influencing podocyte function.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alleviation of diabetes-induced albuminuria in TG mice with PT-specific overexpression of SIRT1.
Figure 2: Direct effects of Claudin-1 on podocytes, mice with streptozotocin-induced diabetes and the phenotypes of PT-specific Sirt1 KO mice.
Figure 3: PT-specific SIRT1 overexpression alleviates diabetic albuminuria in db/db mice but not 5/6Nx mice.
Figure 4: Epigenetic regulation of Cldn1 gene expression by SIRT1.
Figure 5: Evidence for the retrograde interplay from tubular cells to podocytes.
Figure 6: Immunostaining for glomerular SIRT1 or Claudin-1 in human renal biopsy specimens.

Similar content being viewed by others

References

  1. Roxburgh, S.A. et al. Allelic depletion of grem1 attenuates diabetic kidney disease. Diabetes 58, 1641–1650 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rodgers, J.T. et al. Nutrient control of glucose homeostasis through a complex of PGC-1α and SIRT1. Nature 434, 113–118 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Bordone, L. & Guarente, L. Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat. Rev. Mol. Cell Biol. 6, 298–305 (2005).

    Article  CAS  PubMed  Google Scholar 

  4. Purushotham, A. et al. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 9, 327–338 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, R.H. et al. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J. Clin. Invest. 121, 4477–4490 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moynihan, K.A. et al. Increased dosage of mammalian Sir2 in pancreatic beta cells enhances glucose-stimulated insulin secretion in mice. Cell Metab. 2, 105–117 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Kume, S. et al. Calorie restriction enhances cell adaptation to hypoxia through Sirt1-dependent mitochondrial autophagy in mouse aged kidney. J. Clin. Invest. 120, 1043–1055 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. He, W. et al. Sirt1 activation protects the mouse renal medulla from oxidative injury. J. Clin. Invest. 120, 1056–1068 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitada, M., Kume, S., Imaizumi, N. & Koya, D. Resveratrol improves oxidative stress and protects against diabetic nephropathy through normalization of Mn-SOD dysfunction in AMPK/SIRT1-independent pathway. Diabetes 60, 634–643 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tikoo, K., Singh, K., Kabra, D., Sharma, V. & Gaikwad, A. Change in histone H3 phosphorylation, MAP kinase p38, SIR 2 and p53 expression by resveratrol in preventing streptozotocin induced type I diabetic nephropathy. Free Radic. Res. 42, 397–404 (2008).

    Article  CAS  PubMed  Google Scholar 

  11. Kitada, M. et al. Dietary restriction ameliorates diabetic nephropathy through anti-inflammatory effects and regulation of the autophagy via restoration of Sirt1 in diabetic Wistar fatty (fa/fa) rats: a model of type 2 diabetes. Exp. Diabetes Res. 2011, 908185 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xu, Y. et al. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol. Appl. Pharmacol. 259, 395–401 (2012).

    Article  CAS  PubMed  Google Scholar 

  13. Hasegawa, K. et al. Sirt1 protects against oxidative stress–induced renal tubular cell apoptosis by the bidirectional regulation of catalase expression. Biochem. Biophys. Res. Commun. 372, 51–56 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Hasegawa, K. et al. Kidney-specific overexpression of Sirt1 protects against acute kidney injury by retaining peroxisome function. J. Biol. Chem. 285, 13045–13056 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gilbert, R.E. & Cooper, M.E. The tubulointerstitium in progressive diabetic kidney disease: more than an aftermath of glomerular injury? Kidney Int. 56, 1627–1637 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Nedachi, T., Kadotani, A., Ariga, M., Katagiri, H. & Kanzaki, M. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes. Am. J. Physiol. Endocrinol. Metab. 294, E668–E678 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Orimo, M. et al. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler. Thromb. Vasc. Biol. 29, 889–894 (2009).

    Article  CAS  PubMed  Google Scholar 

  18. Gibb, D.M. et al. Renal tubular proteinuria and microalbuminuria in diabetic patients. Arch. Dis. Child. 64, 129–134 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Vaidya, V.S. et al. Regression of microalbuminuria in type 1 diabetes is associated with lower levels of urinary tubular injury biomarkers, kidney injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int. 79, 464–470 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Bonventre, J.V. Can we target tubular damage to prevent renal function decline in diabetes? Semin. Nephrol. 32, 452–462 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ohse, T. et al. De novo expression of podocyte proteins in parietal epithelial cells during experimental glomerular disease. Am. J. Physiol. Renal Physiol. 298, F702–F711 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. Zhang, J. et al. De novo expression of podocyte proteins in parietal epithelial cells in experimental aging nephropathy. Am. J. Physiol. Renal Physiol. 302, F571–F580 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Huby, A.C. et al. Restoration of podocyte structure and improvement of chronic renal disease in transgenic mice overexpressing renin. PLoS ONE 4, e6721 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ohse, T. et al. A new function for parietal epithelial cells: a second glomerular barrier. Am. J. Physiol. Renal Physiol. 297, F1566–F1574 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rincon-Choles, H. et al. ZO-1 expression and phosphorylation in diabetic nephropathy. Diabetes 55, 894–900 (2006).

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Y. et al. Therapeutic approach for diabetic nephropathy using gene delivery of translocase of inner mitochondrial membrane 44 by reducing mitochondrial superoxide production. J. Am. Soc. Nephrol. 17, 1090–1101 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Dai, C. et al. Wnt/β-catenin signaling promotes podocyte dysfunction and albuminuria. J. Am. Soc. Nephrol. 20, 1997–2008 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dhawan, P. et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J. Clin. Invest. 115, 1765–1776 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Leelahavanichkul, A. et al. Angiotensin II overcomes strain-dependent resistance of rapid CKD progression in a new remnant kidney mouse model. Kidney Int. 78, 1136–1153 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Boireau, S. et al. DNA-methylation–dependent alterations of Claudin-4 expression in human bladder carcinoma. Carcinogenesis 28, 246–258 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Turek-Plewa, J. & Jagodziński, P.P. The role of mammalian DNA methyltransferases in the regulation of gene expression. Cell Mol. Biol. Lett. 10, 631–647 (2005).

    CAS  PubMed  Google Scholar 

  32. Fuks, F. DNA methylation and histone modifications: teaming up to silence genes. Curr. Opin. Genet. Dev. 15, 490–495 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Peng, L. et al. SIRT1 deacetylates the DNA methyltransferase 1 (DNMT1) protein and alters its activities. Mol. Cell. Biol. 31, 4720–4734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. O'Hagan, H.M., Mohammad, H.P. & Baylin, S.B. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet. 4, e1000155 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, Q. et al. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc. Natl. Acad. Sci. USA 104, 829–833 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wang, P. et al. Nicotinamide phosphoribosyltransferase protects against ischemic stroke through SIRT1-dependent adenosine monophosphate-activated kinase pathway. Ann. Neurol. 69, 360–374 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Ramsey, K.M. et al. Age-associated loss of Sirt1-mediated enhancement of glucose-stimulated insulin secretion in beta cell–specific Sirt1-overexpressing (BESTO) mice. Aging Cell 7, 78–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, P. et al. Perivascular adipose tissue–derived visfatin is a vascular smooth muscle cell growth factor: role of nicotinamide mononucleotide. Cardiovasc. Res. 81, 370–380 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Formentini, L., Moroni, F. & Chiarugi, A. Detection and pharmacological modulation of nicotinamide mononucleotide (NMN) in vitro and in vivo. Biochem. Pharmacol. 77, 1612–1620 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. Taha, H.M. et al. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2′(3′)-O-(N-(methyl)anthraniloyl)–substituted purine and pyrimidine nucleotides. Mol. Pharmacol. 75, 693–703 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Lai, L.W., Moeckel, G.W. & Lien, Y.H. Kidney-targeted liposome-mediated gene transfer in mice. Gene Ther. 4, 426–431 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Zhang, Z. et al. Regulated ATP release from astrocytes through lysosome exocytosis. Nat. Cell Biol. 9, 945–953 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Peng, L. et al. Sirt1 deacetylates the DNA methyltransferase 1 (Dnmt1) protein and alters its activities. Mol. Cell Biol. 31, 4720–4734 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zorzano, A., Zorzano, A., Hernández-Alvarez, M.I., Palacín, M. & Mingrone, G. Alterations in the mitochondrial regulatory pathways constituted by the nuclear co-factors PGC-1α or PGC-1β and mitofusin 2 in skeletal muscle in type 2 diabetes. Biochim. Biophys. Acta 1797, 1028–1033 (2010).

    Article  CAS  PubMed  Google Scholar 

  45. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M. & Sassone-Corsi, P. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324, 654–657 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Clodfelder-Miller, B., Sarno, P.D., Zmijewska, A.A., Song, L. & Jope, R.S. Physiological and pathological changes in glucose regulate brain Akt and glycogen synthase kinase-3. J. Biol. Chem. 280, 39723–39731 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Leotlela, P.D. et al. Claudin-1 overexpression in melanoma is regulated by PKC and contributes to melanoma cell motility. Oncogene 26, 3846–3856 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Moeller, M.J., Sanden, S.K., Soofi, A., Wiggins, R.C. & Holzman, L.B. Podocyte-specific expression of cre recombinase in transgenic mice. Genesis 35, 39–42 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Sung, S.H. et al. Blockade of vascular endothelial growth factor signaling ameliorates diabetic albuminuria in mice. J. Am. Soc. Nephrol. 17, 3093–3104 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Cohen, C.D. et al. Laser microdissection and gene expression analysis on formaldehyde-fixed archival tissue. Kidney Int. 61, 125–132 (2002).

    Article  CAS  PubMed  Google Scholar 

  51. Kohda, Y. et al. Analysis of segmental renal gene expression by laser capture microdissection. Kidney Int. 57, 321–331 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Asanuma, K., Campbell, K.N., Kim, K., Faul, C. & Mundel, P. Nuclear relocation of the nephrin and CD2AP-binding protein dendrin promotes apoptosis of podocytes. Proc. Natl. Acad. Sci. USA 104, 10134–10139 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Terasawa, K. et al. Epigenetic inactivation of TMS1/ASC in ovarian cancer. Clin. Cancer Res. 10, 2000–2006 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank P. Mundel (Division of Nephrology, Massachusetts General Hospital and Harvard Medical School) and K. Asanuma (Division of Nephrology, Department of Internal Medicine, Juntendo University Faculty of Medicine) for providing cultured podocytes. We also thank S.J. Shankland and C. Campbell (Division of Nephrology, University of Washington) for providing culture PECs. This work was supported by the Scientific Research Fund of the Ministry of Education, Culture, Sports, Science and Technology of Japan (grant 22790800).

Author information

Authors and Affiliations

Authors

Contributions

K. Hasegawa, S.W., L.G. and H.I. designed the experiments and the study. K. Hasegawa, P.S., Y.S. and E.K. collected data or performed experiments for the study. K. Hasegawa, S.W., P.S., H.M., K.F., K. Hosoya, M.K., Y.K., T.K., H.T., K. Hayashi, L.G. and H.I. analyzed the data and contributed to writing the paper.

Corresponding author

Correspondence to Shu Wakino.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–8, Supplementary Figure Legends, Supplementary Results and Supplementary Tables 1–6 (PDF 7721 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasegawa, K., Wakino, S., Simic, P. et al. Renal tubular Sirt1 attenuates diabetic albuminuria by epigenetically suppressing Claudin-1 overexpression in podocytes. Nat Med 19, 1496–1504 (2013). https://doi.org/10.1038/nm.3363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3363

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing