Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior

Abstract

The hypothalamus responds to circulating leptin and insulin in the control of food intake and body weight. A number of neurotransmitters in the hypothalamus, including γ-aminobutyric acid (GABA), also have key roles in feeding. Huntingtin-associated protein 1 (Hap1) is expressed more abundantly in the hypothalamus than in other brain regions, and lack of Hap1 in mice leads to early postnatal death. Hap1 is also involved in intracellular trafficking of the GABAA receptor. Here, we report that fasting upregulates the expression of Hap1 in the rodent hypothalamus, whereas intracerebroventricular administration of insulin downregulates Hap1 by increasing its degradation through ubiquitination. Decreasing the expression of mouse hypothalamic Hap1 by siRNA reduces the level and activity of hypothalamic GABAA receptors and causes a decrease in food intake and body weight. These findings provide evidence linking hypothalamic Hap1 to GABA in the stimulation of feeding and suggest that this mechanism is involved in the feeding-inhibitory actions of insulin in the brain.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Fasting and diet regulate expression of Hap1 in the mouse hypothalamus.
Figure 2: Intraperitoneal injection of glucose reduces expression of Hap1 in the hypothalamus.
Figure 3: Insulin reduces expression of Hap1 in the hypothalamus.
Figure 4: Insulin increases ubiquitination and degradation of Hap1.
Figure 5: Altering Hap1 expression in the mouse hypothalamus through adenoviral infection regulates food intake and body weight.
Figure 6: Decreasing Hap1 expression reduces functional GABAA receptors in the hypothalamus.

Similar content being viewed by others

References

  1. Friedman, J.M. & Halaas, J.L. Leptin and the regulation of body weight in mammals. Nature 395, 763–770 (1998).

    Article  CAS  Google Scholar 

  2. Saper, C.B., Chou, T.C. & Elmquist, J.K. The need to feed: homeostatic and hedonic control of eating. Neuron 36, 199–211 (2002).

    Article  CAS  Google Scholar 

  3. Schwartz, M.W. & Porte, D., Jr. Diabetes, obesity, and the brain. Science 307, 375–379 (2005).

    Article  CAS  Google Scholar 

  4. Benoit, S.C., Clegg, D.J., Seeley, R.J. & Woods, S.C. Insulin and leptin as adiposity signals. Recent Prog. Horm. Res. 59, 267–285 (2004).

    Article  CAS  Google Scholar 

  5. Kalra, S.P. et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20, 68–100 (1999).

    CAS  PubMed  Google Scholar 

  6. Leibowitz, S.F. & Wortley, K.E. Hypothalamic control of energy balance: different peptides, different functions. Peptides 25, 473–504 (2004).

    Article  CAS  Google Scholar 

  7. van den Pol, A.N. Weighing the role of hypothalamic feeding neurotransmitters. Neuron 40, 1059–1061 (2003).

    Article  CAS  Google Scholar 

  8. Olgiati, V.R., Netti, C., Guidobono, F. & Pecile, A. The central GABAergic system and control of food intake under different experimental conditions. Psychopharmacology (Berl.) 68, 163–167 (1980).

    Article  CAS  Google Scholar 

  9. Tsujii, S. & Bray, G.A. GABA-related feeding control in genetically obese rats. Brain Res. 540, 48–54 (1991).

    Article  CAS  Google Scholar 

  10. Stratford, T.R. & Kelley, A.E. GABA in the nucleus accumbens shell participates in the central regulation of feeding behavior. J. Neurosci. 17, 4434–4440 (1997).

    Article  CAS  Google Scholar 

  11. Pu, S. et al. Interactions between neuropeptide Y and gamma-aminobutyric acid in stimulation of feeding: a morphological and pharmacological analysis. Endocrinology 140, 933–940 (1999).

    Article  CAS  Google Scholar 

  12. Li, X.J. et al. A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378, 398–402 (1995).

    Article  CAS  Google Scholar 

  13. Li, X.J. et al. Huntingtin-associated protein (HAP1): discrete neuronal localizations in the brain resemble those of neuronal nitric oxide synthase. Proc. Natl. Acad. Sci. USA 93, 4839–4844 (1996).

    Article  CAS  Google Scholar 

  14. Gutekunst, C.A. et al. The cellular and subcellular localization of huntingtin-associated protein 1 (HAP1): comparison with huntingtin in rat and human. J. Neurosci. 18, 7674–7686 (1998).

    Article  CAS  Google Scholar 

  15. Page, K.J., Potter, L., Aronni, S., Everitt, B.J. & Dunnett, S.B. The expression of Huntingtin-associated protein (HAP1) mRNA in developing, adult and ageing rat CNS: implications for Huntington's disease neuropathology. Eur. J. Neurosci. 10, 1835–1845 (1998).

    Article  CAS  Google Scholar 

  16. Fujinaga, R. et al. Neuroanatomical distribution of Huntingtin-associated protein-1 mRNA in the male mouse brain. J. Comp. Neurol. 478, 88–109 (2004).

    Article  CAS  Google Scholar 

  17. Chan, E.Y. et al. Targeted disruption of Huntingtin-associated protein-1 (Hap1) results in postnatal death due to depressed feeding behavior. Hum. Mol. Genet. 11, 945–959 (2002).

    Article  CAS  Google Scholar 

  18. Li, S.H. et al. Lack of huntingtin-associated protein-1 causes neuronal death resembling hypothalamic degeneration in Huntington's disease. J. Neurosci. 23, 6956–6964 (2003).

    Article  CAS  Google Scholar 

  19. Dragatsis, I., Zeitlin, S. & Dietrich, P. Huntingtin-associated protein 1 (Hap1) mutant mice bypassing the early postnatal lethality are neuroanatomically normal and fertile but display growth retardation. Hum. Mol. Genet. 13, 3115–3125 (2004).

    Article  CAS  Google Scholar 

  20. Vonsattel, J.P. et al. Neuropathological classification of Huntington's disease. J. Neuropathol. Exp. Neurol. 44, 559–577 (1985).

    Article  CAS  Google Scholar 

  21. Kremer, H.P., Roos, R.A., Dingjan, G., Marani, E. & Bots, G.T. Atrophy of the hypothalamic lateral tuberal nucleus in Huntington's disease. J. Neuropathol. Exp. Neurol. 49, 371–382 (1990).

    Article  CAS  Google Scholar 

  22. Sanberg, P.R., Fibiger, H.C. & Mark, R.F. Body weight and dietary factors in Huntington's disease patients compared with matched controls. Med. J. Aust. 1, 407–409 (1981).

    CAS  PubMed  Google Scholar 

  23. Pratley, R.E., Salbe, A.D., Ravussin, E. & Caviness, J.N. Higher sedentary energy expenditure in patients with Huntington's disease. Ann. Neurol. 47, 64–70 (2000).

    Article  CAS  Google Scholar 

  24. Petersen, A. et al. Orexin loss in Huntington's disease. Hum. Mol. Genet. 14, 39–47 (2005).

    Article  CAS  Google Scholar 

  25. Gauthier, L.R. et al. Huntingtin controls neurotrophic support and survival of neurons by enhancing BDNF vesicular transport along microtubules. Cell 118, 127–138 (2004).

    Article  CAS  Google Scholar 

  26. Li, X.J. & Li, S.H. HAP1 and intracellular trafficking. Trends Pharmacol. Sci. 26, 1–3 (2005).

    Article  Google Scholar 

  27. McGuire, J.R., Rong, J., Li, S.H. & Li, X.J. Interaction of Huntingtin-associated protein-1 with kinesin light chain: implications in intracellular trafficking in neurons. J. Biol. Chem. 281, 3552–3559 (2006).

    Article  CAS  Google Scholar 

  28. Kittler, J.T. et al. Huntingtin-associated protein 1 regulates inhibitory synaptic transmission by modulating gamma-aminobutyric acid type A receptor membrane trafficking. Proc. Natl. Acad. Sci. USA 101, 12736–12741 (2004).

    Article  CAS  Google Scholar 

  29. MacDonald, P.E. et al. Impaired glucose-stimulated insulin secretion, enhanced intraperitoneal insulin tolerance, and increased β-cell mass in mice lacking the p110gamma isoform of phosphoinositide 3-kinase. Endocrinology 145, 4078–4083 (2004).

    Article  CAS  Google Scholar 

  30. Chang, G.Q., Karatayev, O., Davydova, Z., Wortley, K. & Leibowitz, S.F. Glucose injection reduces neuropeptide Y and agouti-related protein expression in the arcuate nucleus: a possible physiological role in eating behavior. Brain Res. Mol. Brain Res. 135, 69–80 (2005).

    Article  CAS  Google Scholar 

  31. Yang, X.J., Kow, L.M., Funabashi, T. & Mobbs, C.V. Hypothalamic glucose sensor: similarities to and differences from pancreatic β-cell mechanisms. Diabetes 48, 1763–1772 (1999).

    Article  CAS  Google Scholar 

  32. O'Brien, R.M. & Granner, D.K. Regulation of gene expression by insulin. Physiol. Rev. 76, 1109–1161 (1996).

    Article  CAS  Google Scholar 

  33. Samson, S.L. & Wong, N.C. Role of Sp1 in insulin regulation of gene expression. J. Mol. Endocrinol. 29, 265–279 (2002).

    Article  CAS  Google Scholar 

  34. Rui, L., Fisher, T.L., Thomas, J. & White, M.F. Regulation of insulin/insulin-like growth factor-1 signaling by proteasome-mediated degradation of insulin receptor substrate-2. J. Biol. Chem. 276, 40362–40367 (2001).

    Article  CAS  Google Scholar 

  35. Matsuzaki, H., Daitoku, H., Hatta, M., Tanaka, K. & Fukamizu, A. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc. Natl. Acad. Sci. USA 100, 11285–11290 (2003).

    Article  CAS  Google Scholar 

  36. Herring, D. et al. Constitutive GABAA receptor endocytosis is dynamin-mediated and dependent on a dileucine AP2 adaptin-binding motif within the beta 2 subunit of the receptor. J. Biol. Chem. 278, 24046–24052 (2003).

    Article  CAS  Google Scholar 

  37. Wan, Q. et al. Recruitment of functional GABA(A) receptors to postsynaptic domains by insulin. Nature 388, 686–690 (1997).

    Article  CAS  Google Scholar 

  38. Decavel, C. & Van den Pol, A.N. GABA: a dominant neurotransmitter in the hypothalamus. J. Comp. Neurol. 302, 1019–1037 (1990).

    Article  CAS  Google Scholar 

  39. Li, S.H., Li, H., Torre, E.R. & Li, X.J. Expression of huntingtin-associated protein-1 in neuronal cells implicates a role in neuritic growth. Mol. Cell. Neurosci. 16, 168–183 (2000).

    Article  CAS  Google Scholar 

  40. Coscina, D.V., Castonguay, T.W. & Stern, J.S. Effects of increasing brain GABA on the meal patterns of genetically obese vs. lean Zucker rats. Int. J. Obes. Relat. Metab. Disord. 16, 425–433 (1992).

    CAS  PubMed  Google Scholar 

  41. Carvalheira, J.B. et al. Selective impairment of insulin signalling in the hypothalamus of obese Zucker rats. Diabetologia 46, 1629–1640 (2003).

    Article  CAS  Google Scholar 

  42. Staley, K.J., Soldo, B.L. & Proctor, W.R. Ionic mechanisms of neuronal excitation by inhibitory GABAA receptors. Science 269, 977–981 (1995).

    Article  CAS  Google Scholar 

  43. McBain, C.J. & Fisahn, A. Interneurons unbound. Nat. Rev. Neurosci. 2, 11–23 (2001).

    Article  CAS  Google Scholar 

  44. Emmerson, P.J. & Miller, R.J. Pre- and postsynaptic actions of opioid and orphan opioid agonists in the rat arcuate nucleus and ventromedial hypothalamus in vitro. J. Physiol. (Lond.) 517, 431–445 (1999).

    Article  CAS  Google Scholar 

  45. Vogt, K., Mellor, J., Tong, G. & Nicoll, R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26, 187–196 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Jaswani for technical assistance and the members of the Li laboratory for comments and critical reading. This work was supported by US National Institutes of Health grants NS36232 and AG19206 (to X.J.L.), NS045016 (to S.H.L.), P01 HD29587 (to S.A.L.), MH43422 to (S.F.L.) and AG00975 (to G.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Jiang Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Hap1 transcripts in the hypothalamus. (PDF 166 kb)

Supplementary Fig. 2

Immunostaining of the hypothalamus with Hap1-specific antibody. (PDF 105 kb)

Supplementary Fig. 3

Hypothalamic expression of Hap1 after intracerebroventricular injection of insulin, NPY or leptin. (PDF 229 kb)

Supplementary Fig. 4

Colocalization of Hap1 with GABAA β2/3 subunits. (PDF 173 kb)

Supplementary Fig. 5

Hap1 expression and other peptides in the hypothalamus. (PDF 282 kb)

Supplementary Methods (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng, G., Chang, Gq., Lin, J. et al. Hypothalamic huntingtin-associated protein 1 as a mediator of feeding behavior. Nat Med 12, 526–533 (2006). https://doi.org/10.1038/nm1382

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm1382

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing