Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity

Abstract

Dissociated primary sensory neurons are commonly used to study growth factor–dependent cell survival, axon outgrowth, differentiation and basic mechanisms of sensory physiology and pain. Spinal or trigeminal sensory neurons can be collected from embryos, neonates or adults, treated with enzymes that degrade the extracellular matrix, triturated and grown in defined media with or without growth factors and additional animal sera. Production of cultures can take as little as 2.5 h. Cells can be used almost immediately or maintained for as long as 1 month. Ease of production and the ability to control growth conditions make sensory neuron culture a powerful model system for studying basic neurobiology of central and peripheral nervous systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dissection of dorsal root ganglia (DRGs) from the mouse and identification of specific ganglia.
Figure 2: Location of the trigeminal ganglia (tg, double arrow) in the cranial cavity.
Figure 3: Isolated DRG neurons visualized with an antibody to the high-molecular weight neurofilament protein, which preferentially labels neurons with higher-caliber axons.

Similar content being viewed by others

References

  1. Baker, C.V. & Bronner-Fraser, M. Vertebrate cranial placodes I. Embryonic induction. Dev. Biol. 232, 1–61 (2001).

    Article  CAS  Google Scholar 

  2. Covell, D.A. Jr. & Noden, D.M. Embryonic development of the chick primary trigeminal sensory-motor complex. J. Comp. Neurol. 286, 488–503 (1989).

    Article  Google Scholar 

  3. Schlosser, G. Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. J. Exp. Zoolog. B. Mol. Dev. Evol. 304, 347–399 (2005).

    Article  Google Scholar 

  4. Eckert, S.P., Taddese, A. & McCleskey, E.W. Isolation and culture of rat sensory neurons having distinct sensory modalities. J. Neurosci. Meth. 77, 183–190 (1997).

    Article  CAS  Google Scholar 

  5. Farinas, I., Cano-Jaimez, M., Bellmunt, E. & Soriano, M. Regulation of neurogenesis by neurotrophins in developing spinal sensory ganglia. Brain Res. Bull. 57, 809–816 (2002).

    Article  CAS  Google Scholar 

  6. Lawson, S.N. & Biscoe, T.J. Development of mouse dorsal root ganglia: an autoradiographic and quantitative study. J. Neurocytol. 8, 265–274 (1979).

    Article  CAS  Google Scholar 

  7. Altman, J. & Bayer, S.A. Development of the cranial nerve ganglia and related nuclei in the rat. Adv. Anat. Embryol. Cell Biol. 74, 1–90 (1982).

    Article  CAS  Google Scholar 

  8. Forbes, D.J. & Welt, C. Neurogenesis in the trigeminal ganglion of the albino rat: a quantitative autoradiographic study. J. Comp. Neurol. 199, 133–147 (1981).

    Article  CAS  Google Scholar 

  9. Rhoades, R.W. et al. Birthdates of trigeminal ganglion cells contributing axons to the infraorbital nerve and specific vibrissal follicles in the rat. J. Comp. Neurol. 307, 163–175 (1991).

    Article  CAS  Google Scholar 

  10. Baccaglini, P.I. & Hogan, P.G. Some rat sensory neurons in culture express characteristics of differentiated pain sensory cells. Proc. Natl. Acad. Sci. USA. 80, 594–598 (1983).

    Article  CAS  Google Scholar 

  11. Buchman, V.L. & Davies, A.M. Different neurotrophins are expressed and act in a developmental sequence to promote the survival of embryonic sensory neurons. Development 118, 989–1001 (1993).

    CAS  PubMed  Google Scholar 

  12. Davies, A. & Lumsden, A. Relation of target encounter and neuronal death to nerve growth factor responsiveness in the developing mouse trigeminal ganglion. J. Comp. Neurol. 223, 124–137 (1984).

    Article  CAS  Google Scholar 

  13. Lindwall, C. & Kanje, M. The Janus role of c-Jun: cell death versus survival and regeneration of neonatal sympathetic and sensory neurons. Exp. Neurol. 196, 184–194 (2005).

    Article  CAS  Google Scholar 

  14. Klein, R.D. et al. A GPI-linked protein that interacts with Ret to form a candidate neurturin receptor. Nature 387, 717–721 (1997).

    Article  CAS  Google Scholar 

  15. Li, C. et al. Correlation between semaphorin3A-induced facilitation of axonal transport and local activation of a translation initiation factor eukaryotic translation initiation factor 4E. J. Neurosci. 24, 6161–6170 (2004).

    Article  CAS  Google Scholar 

  16. Liu, R.Y., Schmid, R.S., Snider, W.D. & Maness, P.F. NGF enhances sensory axon growth induced by laminin but not by the L1 cell adhesion molecule. Mol. Cell. Neurosci. 20, 2–12 (2002).

    Article  CAS  Google Scholar 

  17. Nakamura, T., Aoki, K. & Matsuda, M. FRET imaging in nerve growth cones reveals a high level of RhoA activity within the peripheral domain. Brain Res. Mol. Brain Res. 139, 277–287 (2005).

    Article  CAS  Google Scholar 

  18. Takahashi, T., Nakamura, F. & Strittmatter, S.M. Neuronal and non-neuronal collapsin-1 binding sites in developing chick are distinct from other semaphorin binding sites. J. Neurosci. 17, 9183–9193 (1997).

    Article  CAS  Google Scholar 

  19. Baloh, R.H. et al. Artemin, a novel member of the GDNF ligand family, supports peripheral and central neurons and signals through the GFRalpha3-RET receptor complex. Neuron 21, 1291–1302 (1998).

    Article  CAS  Google Scholar 

  20. Ben-Zvi, A. et al. Semaphorin 3A and neurotrophins: a balance between apoptosis and survival signaling in embryonic DRG neurons. J. Neurochem. 96, 585–597 (2006).

    Article  CAS  Google Scholar 

  21. Davies, A.M., Minichiello, L. & Klein, R. Developmental changes in NT3 signalling via TrkA and TrkB in embryonic neurons. EMBO J. 14, 4482–4489 (1995).

    Article  CAS  Google Scholar 

  22. Maina, F., Hilton, M.C., Ponzetto, C., Davies, A.M. & Klein, R. Met receptor signaling is required for sensory nerve development and HGF promotes axonal growth and survival of sensory neurons. Genes Dev. 11, 3341–3350 (1997).

    Article  CAS  Google Scholar 

  23. Ryden, M., Hempstead, B. & Ibanez, C.F. Differential modulation of neuron survival during development by nerve growth factor binding to the p75 neurotrophin receptor. J. Biol. Chem. 272, 16322–16328 (1997).

    Article  CAS  Google Scholar 

  24. Campenot, R.B. Local control of neurite development by nerve growth factor. Proc. Natl. Acad. Sci. USA. 74, 4516–4519 (1977).

    Article  CAS  Google Scholar 

  25. Riccio, A., Pierchala, B.A., Ciarallo, C.L. & Ginty, D.D. An NGF-TrkA-mediated retrograde signal to transcription factor CREB in sympathetic neurons. Science 277, 1097–1100 (1997).

    Article  CAS  Google Scholar 

  26. Kim, J.E., Liu, B.P., Park, J.H. & Strittmatter, S.M. Nogo-66 receptor prevents raphespinal and rubrospinal axon regeneration and limits functional recovery from spinal cord injury. Neuron 44, 439–451 (2004).

    Article  CAS  Google Scholar 

  27. Lindsay, R.M. Nerve growth factors (NGF, BDNF) enhance axonal regeneration but are not required for survival of adult sensory neurons. J. Neurosci. 8, 2394–2405 (1988).

    Article  CAS  Google Scholar 

  28. Verma, P. et al. Axonal protein synthesis and degradation are necessary for efficient growth cone regeneration. J. Neurosci. 25, 331–342 (2005).

    Article  CAS  Google Scholar 

  29. Zheng, J.Q. et al. A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons. J. Neurosci. 21, 9291–9303 (2001).

    Article  CAS  Google Scholar 

  30. Wu, K.Y. et al. Local translation of RhoA regulates growth cone collapse. Nature 436, 1020–1024 (2005).

    Article  CAS  Google Scholar 

  31. Carr, P.A. & Nagy, J.I. Emerging relationships between cytochemical properties and sensory modality transmission in primary sensory neurons. Brain Res. Bull. 30, 209–219 (1993).

    Article  CAS  Google Scholar 

  32. Scott, S. (ed.) Sensory Neurons 441 (Oxford University Press, Oxford, 1992).

    Google Scholar 

  33. Fundin, B.T. et al. Differential dependency of cutaneous mechanoreceptors on neurotrophins, trk receptors, and P75 LNGFR. Dev. Biol. 190, 94–116 (1997).

    Article  CAS  Google Scholar 

  34. Rice, F.L., Fundin, B.T., Arvidsson, J., Aldskogius, H. & Johansson, O. Comprehensive immunofluorescence and lectin binding analysis of vibrissal follicle sinus complex innervation in the mystacial pad of the rat. J. Comp. Neurol. 385, 149–184 (1997).

    Article  CAS  Google Scholar 

  35. Molliver, D.C., Radeke, M.J., Feinstein, S.C. & Snider, W.D. Presence or absence of TrkA protein distinguishes subsets of small sensory neurons with unique cytochemical characteristics and dorsal horn projections. J. Comp. Neurol. 361, 404–416 (1995).

    Article  CAS  Google Scholar 

  36. McMahon, S.B., Armanini, M.P., Ling, L.H. & Phillips, H.S. Expression and coexpression of Trk receptors in subpopulations of adult primary sensory neurons projecting to identified peripheral targets. Neuron 12, 1161–1171 (1994).

    Article  CAS  Google Scholar 

  37. Lawson, S.N. Morphological and biochemical cell types of sensory neurons. In Sensory Neurons: Diversity Development and Plasticity (ed. Scott, S.) 27–59 (Oxford University Press, New York, 1992).

    Google Scholar 

  38. Celio, M.R. Calbindin D-28k and parvalbumin in the rat nervous system. Neuroscience 35, 375–475 (1990).

    Article  CAS  Google Scholar 

  39. Tominaga, M. et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 531–543 (1998).

    Article  CAS  Google Scholar 

  40. Reynolds, M., Alvares, D., Middleton, J. & Fitzgerald, M. Neonatally wounded skin induces NGF-independent sensory neurite outgrowth in vitro . Brain Res. Dev. Brain Res. 102, 275–283 (1997).

    Article  CAS  Google Scholar 

  41. Taherzadeh, O., Otto, W.R., Anand, U., Nanchahal, J. & Anand, P. Influence of human skin injury on regeneration of sensory neurons. Cell Tissue Res. 312, 275–280 (2003).

    Article  CAS  Google Scholar 

  42. Koizumi, S. et al. Ca2+ waves in keratinocytes are transmitted to sensory neurons: the involvement of extracellular ATP and P2Y2 receptor activation. Biochem. J. 380, 329–338 (2004).

    Article  CAS  Google Scholar 

  43. Gu, J.G. & MacDermott, A.B. Activation of ATP P2X receptors elicits glutamate release from sensory neuron synapses. Nature 389, 749–753 (1997).

    Article  CAS  Google Scholar 

  44. Shepherd, I.T., Luo, Y., Lefcort, F., Reichardt, L.F. & Raper, J.A. A sensory axon repellent secreted from ventral spinal cord explants is neutralized by antibodies raised against collapsin-1. Development 124, 1377–1385 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Wood, J.N. et al. Capsaicin-induced ion fluxes in dorsal root ganglion cells in culture. J. Neurosci. 8, 3208–3220 (1988).

    Article  CAS  Google Scholar 

  46. Jordt, S.E. et al. Mustard oils and cannabinoids excite sensory nerve fibres through the TRP channel ANKTM1. Nature 427, 260–265 (2004).

    Article  CAS  Google Scholar 

  47. Peier, A.M. et al. A heat-sensitive TRP channel expressed in keratinocytes. Science 296, 2046–2049 (2002).

    Article  CAS  Google Scholar 

  48. Cesare, P. & McNaughton, P. A novel heat-activated current in nociceptive neurons and its sensitization by bradykinin. Proc. Natl. Acad. Sci. USA 93, 15435–15439 (1996).

    Article  CAS  Google Scholar 

  49. Reid, G. & Flonta, M.L. Physiology. Cold current in thermoreceptive neurons. Nature 413, 480 (2001).

    Article  CAS  Google Scholar 

  50. McCarter, G.C., Reichling, D.B. & Levine, J.D. Mechanical transduction by rat dorsal root ganglion neurons in vitro . Neurosci. Lett. 273, 179–182 (1999).

    Article  CAS  Google Scholar 

  51. Cook, S.P., Vulchanova, L., Hargreaves, K.M., Elde, R. & McCleskey, E.W. Distinct ATP receptors on pain-sensing and stretch-sensing neurons. Nature 387, 505–508 (1997).

    Article  CAS  Google Scholar 

  52. Hu-Tsai, M., Winter, J. & Woolf, C.J. Regional differences in the distribution of capsaicin-sensitive target-identified adult rat dorsal root ganglion neurons. Neurosci. Lett. 143, 251–254 (1992).

    Article  CAS  Google Scholar 

  53. Gold, M.S. & Traub, R.J. Cutaneous and colonic rat DRG neurons differ with respect to both baseline and PGE2-induced changes in passive and active electrophysiological properties. J. Neurophysiol. 91, 2524–2531 (2004).

    Article  CAS  Google Scholar 

  54. Dang, K., Bielefeldt, K. & Gebhart, G.F. Differential responses of bladder lumbosacral and thoracolumbar dorsal root ganglion neurons to purinergic agonists, protons, and capsaicin. J. Neurosci. 25, 3973–3984 (2005).

    Article  CAS  Google Scholar 

  55. Woolf, C.J. et al. The growth-associated protein GAP-43 appears in dorsal root ganglion cells and in the dorsal horn of the rat spinal cord following peripheral nerve injury. Neuroscience 34, 465–478 (1990).

    Article  CAS  Google Scholar 

  56. Genc, B., Ulupinar, E. & Erzurumlu, R.S. Differential Trk expression in explant and dissociated trigeminal ganglion cell cultures. J. Neurobiol. 64, 145–156 (2005).

    Article  CAS  Google Scholar 

  57. Lewin, G.R., Ritter, A.M. & Mendell, L.M. On the role of nerve growth factor in the development of myelinated nociceptors. J. Neurosci. 12, 1896–1905 (1992).

    Article  CAS  Google Scholar 

  58. Andersen, P.L., Doucette, J.R. & Nazarali, A.J. A novel method of eliminating non-neuronal proliferating cells from cultures of mouse dorsal root ganglia. Cell Mol. Neurobiol. 23, 205–210 (2003).

    Article  CAS  Google Scholar 

  59. Wallace, T.L. & Johnson, E.M. Jr . Cytosine arabinoside kills postmitotic neurons: evidence that deoxycytidine may have a role in neuronal survival that is independent of DNA synthesis. J. Neurosci. 9, 115–124 (1989).

    Article  CAS  Google Scholar 

  60. Winter, J., Forbes, C.A., Sternberg, J. & Lindsay, R.M. Nerve growth factor (NGF) regulates adult rat cultured dorsal root ganglion neuron responses to the excitotoxin capsaicin. Neuron 1, 973–981 (1988).

    Article  CAS  Google Scholar 

  61. Babes, A., Zorzon, D. & Reid, G. Two populations of cold-sensitive neurons in rat dorsal root ganglia and their modulation by nerve growth factor. Eur. J. Neurosci. 20, 2276–2282 (2004).

    Article  Google Scholar 

  62. Mamet, J., Baron, A., Lazdunski, M. & Voilley, N. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels. J. Neurosci. 22, 10662–10670 (2002).

    Article  CAS  Google Scholar 

  63. Malin, S.A. et al. Glial cell line-derived neurotrophic factor family members sensitize nociceptors in vitro and produce thermal hyperalgesia in vivo . J. Neurosci. 26, 8588–8599 (2006).

    Article  CAS  Google Scholar 

  64. Shu, X. & Mendell, L.M. Nerve growth factor acutely sensitizes the response of adult rat sensory neurons to capsaicin. Neurosci. Lett. 274, 159–162 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Institute of Neurological Disorders and Stroke Grants NS 311826 (B.M.D.) and National Institute of Diabetes and Digestive and Kidney Diseases Grant DK 063922 (S.A.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sacha A Malin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Malin, S., Davis, B. & Molliver, D. Production of dissociated sensory neuron cultures and considerations for their use in studying neuronal function and plasticity. Nat Protoc 2, 152–160 (2007). https://doi.org/10.1038/nprot.2006.461

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nprot.2006.461

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing