Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bowels control brain: gut hormones and obesity

Abstract

Food intake and energy expenditure are tightly regulated by the brain, in a homeostatic process that integrates diverse hormonal, neuronal and metabolic signals. The gastrointestinal tract is an important source of such signals, which include several hormones released by specialized enteroendocrine cells. These hormones exert powerful effects on appetite and energy expenditure. This Review addresses the physiological roles of peptide YY, pancreatic polypeptide, islet amyloid polypeptide, glucagon-like peptide 1, glucagon, oxyntomodulin, cholecystokinin and ghrelin and discusses their potential as targets for the development of novel treatments for obesity.

Key Points

  • The history of pharmacological therapies for obesity is characterized principally by inefficacy and marked adverse effects

  • Robust weight loss can be achieved through bariatric surgery, with associated changes in the intestinal hormonal response to calorie intake

  • Gut hormones such as glucagon-like peptide 1, peptide YY, pancreatic polypeptide, glucagon and islet amyloid polypeptide act in an integrated fashion to modulate appetite and energy expenditure

  • A potential therapy for obesity might be based on the concept of pharmacological mimicry of the hormonal milieu after bariatric surgery

  • Development of such therapies will, however, require improved understanding of the interactions between hormones and of their integration with other signals of nutritional status

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A complex neuronal network within the CNS controls energy homeostasis.
Figure 2: Comparison of bariatric surgical procedures.
Figure 3: Tissue-specific proglucagon cleavage.

Similar content being viewed by others

References

  1. Hutton, B. & Fergusson, D. Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: a systematic review of randomized clinical trials. Am. J. Clin. Nutr. 80, 1461–1468 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Adams, T. D. et al. Long-term mortality after gastric bypass surgery. N. Engl. J. Med. 357, 753–761 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Sjöström, L. et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357, 741–752 (2007).

    Article  PubMed  Google Scholar 

  4. Dixon, A. F., Dixon, J. B. & O'Brien, P. E. Laparoscopic adjustable gastric banding induces prolonged satiety: a randomized blind crossover study. J. Clin. Endocrinol. Metab. 90, 813–819 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Kenler, H. A., Brolin, R. E. & Cody, R. P. Changes in eating behavior after horizontal gastroplasty and Roux-en-Y gastric bypass. Am. J. Clin. Nutr. 52, 87–92 (1990).

    Article  CAS  PubMed  Google Scholar 

  6. Gan, S. S., Talbot, M. L. & Jorgensen, J. O. Efficacy of surgery in the management of obesity-related type 2 diabetes mellitus. ANZ J. Surg. 77, 958–962 (2007).

    Article  PubMed  Google Scholar 

  7. Kellum, J. M. et al. Gastrointestinal hormone responses to meals before and after gastric bypass and vertical banded gastroplasty. Ann. Surg. 211, 763–770 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. le Roux, C. W. et al. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann. Surg. 243, 108–114 (2006).

    Article  PubMed  Google Scholar 

  9. Chan, J. L., Heist, K., DePaoli, A. M., Veldhuis, J. D. & Mantzoros, C. S. The role of falling leptin levels in the neuroendocrine and metabolic adaptation to short-term starvation in healthy men. J. Clin. Invest. 111, 1409–1421 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tatemoto, K. & Mutt, V. Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature 285, 417–418 (1980).

    Article  CAS  PubMed  Google Scholar 

  11. Mentlein, R., Dahms, P., Grandt, D. & Kruger, R. Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV. Regul. Pept. 49, 133–144 (1993).

    Article  CAS  PubMed  Google Scholar 

  12. Grandt, D. et al. Two molecular forms of peptide YY (PYY) are abundant in human blood: characterization of a radioimmunoassay recognizing PYY 1–36 and PYY 3–36. Regul. Pept. 51, 151–159 (1994).

    Article  CAS  PubMed  Google Scholar 

  13. Keire, D. A., Bowers, C. W., Solomon, T. E. & Reeve, J. R. Jr. Structure and receptor binding of PYY analogs. Peptides 23, 305–321 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Adrian, T. E. et al. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 1070–1077 (1985).

    Article  CAS  PubMed  Google Scholar 

  15. Batterham, R. L. et al. Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metab. 4, 223–233 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Pedersen-Bjergaard, U. et al. Influence of meal composition on postprandial peripheral plasma concentrations of vasoactive peptides in man. Scand. J. Clin. Lab. Invest. 56, 497–503 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Degen, L. et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am. J. Physiol. Regul. Integr. Comp. Physiol. 292, R1391–R1399 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Adrian, T. E. et al. Effect of peptide YY on gastric, pancreatic, and biliary function in humans. Gastroenterology 89, 494–499 (1985).

    Article  CAS  PubMed  Google Scholar 

  19. Savage, A. P., Adrian, T. E., Carolan, G., Chatterjee, V. K. & Bloom, S. R. Effects of peptide YY (PYY) on mouth to caecum intestinal transit time and on the rate of gastric emptying in healthy volunteers. Gut 28, 166–170 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hoentjen, F., Hopman, W. P. & Jansen, J. B. Effect of circulating peptide YY on gallbladder emptying in humans. Scand. J. Gastroenterol. 36, 1086–1091 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Koda, S. et al. The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Batterham, R. L. et al. Gut hormone PYY(3–36) physiologically inhibits food intake. Nature 418, 650–654 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Chelikani, P. K., Haver, A. C. & Reidelberger, R. D. Intermittent intraperitoneal infusion of peptide YY(3–36) reduces daily food intake and adiposity in obese rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293, R39–R46 (2007).

    Article  CAS  PubMed  Google Scholar 

  24. Pittner, R. A. et al. Effects of PYY[3–36] in rodent models of diabetes and obesity. Int. J. Obes. Relat. Metab. Disord. 28, 963–971 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Batterham, R. L. et al. Inhibition of food intake in obese subjects by peptide YY3–36. N. Engl. J. Med. 349, 941–948 (2003).

    Article  CAS  PubMed  Google Scholar 

  26. Degen, L. et al. Effect of peptide YY3–36 on food intake in humans. Gastroenterology 129, 1430–1436 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. le Roux, C. W. et al. Supraphysiological doses of intravenous PYY3–36 cause nausea, but no additional reduction in food intake. Ann. Clin. Biochem. 45, 93–95 (2008).

    Article  CAS  PubMed  Google Scholar 

  28. Sloth, B., Holst, J. J., Flint, A., Gregersen, N. T. & Astrup, A. Effects of PYY1–36 and PYY3–36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects. Am. J. Physiol. Endocrinol. Metab. 292, E1062–E1068 (2007).

    Article  CAS  PubMed  Google Scholar 

  29. Gantz, I. et al. Efficacy and safety of intranasal peptide YY3–36 for weight reduction in obese adults. J. Clin. Endocrinol. Metab. 92, 1754–1757 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Beglinger, C. et al. Pharmacokinetics and pharmacodynamic effects of oral GLP-1 and PYY3–36: a proof-of-concept study in healthy subjects. Clin. Pharmacol. Ther. 84, 468–474 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. le Roux, C. W. et al. Gut hormones as mediators of appetite and weight loss after Roux-en-Y gastric bypass. Ann. Surg. 246, 780–785 (2007).

    Article  PubMed  Google Scholar 

  32. Adrian, T. E. et al. Distribution and release of human pancreatic polypeptide. Gut 17, 940–944 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Larsson, L. I., Sundler, F. & Håkanson, R. Immunohistochemical localization of human pancreatic polypeptide (HPP) to a population of islet cells. Cell Tissue Res. 156, 167–171 (1975).

    Article  CAS  PubMed  Google Scholar 

  34. Schwartz, T. W. et al. Vagal, cholinergic regulation of pancreatic polypeptide secretion. J. Clin. Invest. 61, 781–789 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gerald, C. et al. A receptor subtype involved in neuropeptide-Y-induced food intake. Nature 382, 168–171 (1996).

    Article  CAS  PubMed  Google Scholar 

  36. Ueno, N. et al. Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology 117, 1427–1432 (1999).

    Article  CAS  PubMed  Google Scholar 

  37. Asakawa, A. et al. Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology 124, 1325–1336 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. McTigue, D. M. & Rogers, R. C. Pancreatic polypeptide stimulates gastric motility through a vagal-dependent mechanism in rats. Neurosci. Lett. 188, 93–96 (1995).

    Article  CAS  PubMed  Google Scholar 

  39. Batterham, R. L. et al. Pancreatic polypeptide reduces appetite and food intake in humans. J. Clin. Endocrinol. Metab. 88, 3989–3992 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Schmidt, P. T. et al. A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. J. Clin. Endocrinol. Metab. 90, 5241–5246 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Berntson, G. G., Zipf, W. B., O'Dorisio, T. M., Hoffman, J. A. & Chance, R. E. Pancreatic polypeptide infusions reduce food intake in Prader–Willi syndrome. Peptides 14, 497–503 (1993).

    Article  CAS  PubMed  Google Scholar 

  42. Cooper, G. J. et al. Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc. Natl Acad. Sci. USA 84, 8628–8632 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Christopoulos, G. et al. Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Mol. Pharmacol. 56, 235–242 (1999).

    Article  CAS  PubMed  Google Scholar 

  44. Silvestre, R. A. et al. Selective amylin inhibition of the glucagon response to arginine is extrinsic to the pancreas. Am. J. Physiol. Endocrinol. Metab. 280, E443–E449 (2001).

    Article  CAS  PubMed  Google Scholar 

  45. Young, A. A., Gedulin, B. R. & Rink, T. J. Dose-responses for the slowing of gastric emptying in a rodent model by glucagon-like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45, 1–3 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Gedulin, B. R., Jodka, C. M., Herrmann, K. & Young, A. A. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul. Pept. 137, 121–127 (2006).

    Article  CAS  PubMed  Google Scholar 

  47. Furrer, D., Kaufmann, K., Reusch, C. E. & Lutz, T. A. Amylin reduces plasma glucagon concentration in cats. Vet. J. 184, 236–240 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Lutz, T. A. et al. Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides 19, 309–317 (1998).

    Article  CAS  PubMed  Google Scholar 

  49. Roth, J. D. et al. Combination therapy with amylin and peptide YY[3–36] in obese rodents: anorexigenic synergy and weight loss additivity. Endocrinology 148, 6054–6061 (2007).

    Article  CAS  PubMed  Google Scholar 

  50. Bhavsar, S., Watkins, J. & Young, A. Synergy between amylin and cholecystokinin for inhibition of food intake in mice. Physiol. Behav. 64, 557–561 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Levetan, C. et al. Impact of pramlintide on glucose fluctuations and postprandial glucose, glucagon, and triglyceride excursions among patients with type 1 diabetes intensively treated with insulin pumps. Diabetes Care 26, 1–8 (2003).

    Article  CAS  PubMed  Google Scholar 

  52. Roth, J. D. et al. Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies. Proc. Natl Acad. Sci. USA 105, 7257–7262 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ravussin, E. et al. Enhanced weight loss with pramlintide/metreleptin: an integrated neurohormonal approach to obesity pharmacotherapy. Obesity 17, 1736–1743 (2009).

    Article  CAS  PubMed  Google Scholar 

  54. Orskov, C., Rabenhøj, L., Wettergren, A., Kofod, H. & Holst, J. J. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43, 535–539 (1994).

    Article  CAS  PubMed  Google Scholar 

  55. Herrmann, C. et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion 56, 117–126 (1995).

    Article  CAS  PubMed  Google Scholar 

  56. Mojsov, S. et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of post-translational processing. J. Biol. Chem. 261, 11880–11889 (1986).

    CAS  PubMed  Google Scholar 

  57. Rocca, A. S. & Brubaker, P. L. Role of the vagus nerve in mediating proximal nutrient-induced glucagon-like peptide-1 secretion. Endocrinology 140, 1687–1694 (1999).

    Article  CAS  PubMed  Google Scholar 

  58. Chu, Z. L. et al. A role for intestinal endocrine cell-expressed g protein-coupled receptor 119 in glycemic control by enhancing glucagon-like peptide-1 and glucose-dependent insulinotropic peptide release. Endocrinology 149, 2038–2047 (2008).

    Article  CAS  PubMed  Google Scholar 

  59. Kreymann, B., Williams, G., Ghatei, M. A. & Bloom, S. R. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 2, 1300–1304 (1987).

    Article  CAS  PubMed  Google Scholar 

  60. Gutniak, M., Orskov, C., Holst, J. J., Ahrén, B. & Efendic, S. Antidiabetogenic effect of glucagon-like peptide-1 (7–36)amide in normal subjects and patients with diabetes mellitus. N. Engl. J. Med. 326, 1316–1322 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Willms, B. et al. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: effects of exogenous glucagon-like peptide-1 (GLP-1)-(7–36) amide in type 2 (noninsulin-dependent) diabetic patients. J. Clin. Endocrinol. Metab. 81, 327–332 (1996).

    CAS  PubMed  Google Scholar 

  62. Flint, A., Raben, A., Astrup, A. & Holst, J. J. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J. Clin. Invest. 101, 515–520 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zander, M., Madsbad, S., Madsen, J. L. & Holst, J. J. Effect of 6-week course of glucagon-like peptide 1 on glycemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 359, 824–830 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Kieffer, T. J., McIntosh, C. H. & Pederson, R. A. Degradation of glucose-dependent insulinotropic polypeptide and truncated glucagon-like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136, 3585–3596 (1995).

    Article  CAS  PubMed  Google Scholar 

  65. Eng, J., Kleinman, W. A., Singh, L., Singh, G. & Raufman, J. P. Isolation and characterization of exendin-4, an exendin-3 analog, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J. Biol. Chem. 267, 7402–7405 (1992).

    CAS  PubMed  Google Scholar 

  66. Russell-Jones, D. Molecular, pharmacological and clinical aspects of liraglutide, a once-daily human GLP-1 analog. Mol. Cell. Endocrinol. 297, 137–140 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Ratner, R. E. et al. Long-term effects of exenatide therapy over 82 weeks on glycemic control and weight in over-weight metformin-treated patients with type 2 diabetes mellitus. Diabetes Obes. Metab. 8, 419–428 (2006).

    Article  CAS  PubMed  Google Scholar 

  68. Astrup, A. et al. Effects of liraglutide in the treatment of obesity: a randomised, double-blind, placebo-controlled study. Lancet 374, 1606–1616 (2009).

    Article  CAS  PubMed  Google Scholar 

  69. Nauck, M. A. et al. Treatment with the human once-weekly glucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with type 2 diabetes inadequately controlled with metformin alone: a double-blind placebo-controlled study. Diabetes Care 32, 1237–1243 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Astrup, A., Rössner, S., Van Gaal, L. & Rasmusen, M. F. Liraglutide for weight loss in obese people—Authors' reply. Lancet 375, 552–553 (2010).

    Article  Google Scholar 

  71. Knudsen, L. B. et al. Small-molecule agonists for the glucagon-like peptide 1 receptor. Proc. Natl Acad. Sci. USA 104, 937–942 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. ClinicalTrials.gov A two part trial investigating the safety of NN9924 in healthy male subjects [online], (2010).

  73. Overton, H. A. et al. Deorphanization of a G protein-coupled receptor for oleoylethanolamide and its use in the discovery of small-molecule hypophagic agents. Cell Metab. 3, 167–175 (2006).

    Article  CAS  PubMed  Google Scholar 

  74. Jones, R. M., Leonard, J. N., Buzard, D. J. & Lehmann, J. GPR119 agonists for the treatment of type 2 diabetes. Expert Opin. Ther. Pat. 19, 1339–1359 (2009).

    Article  CAS  PubMed  Google Scholar 

  75. de Jong, A., Strubbe, J. H. & Steffens, A. B. Hypothalamic influence on insulin and glucagon release in the rat. Am. J. Physiol. 233, E380–E388 (1977).

    CAS  PubMed  Google Scholar 

  76. Dencker, H., Hedner, P., Holst, J. & Tranberg, K. G. Pancreatic glucagon response to an ordinary meal. Scand. J. Gastroenterol. 10, 471–474 (1975).

    CAS  PubMed  Google Scholar 

  77. Langhans, W., Pantel, K., Muller-Schell, W., Eggenberger, E. & Scharrer, E. Hepatic handling of pancreatic glucagon and glucose during meals in rats. Am. J. Physiol. 247, R827–R832 (1984).

    CAS  PubMed  Google Scholar 

  78. Deacon, C. F. et al. Differential regional metabolism of glucagon in anesthetized pigs. Am. J. Physiol. Endocrinol. Metab. 285, E552–E560 (2003).

    Article  CAS  PubMed  Google Scholar 

  79. Geary, N., Le Sauter, J. & Noh, U. Glucagon acts in the liver to control spontaneous meal size in rats. Am. J. Physiol. 264, R116–R122 (1993).

    CAS  PubMed  Google Scholar 

  80. Geary, N. & Smith, G. P. Selective hepatic vagotomy blocks pancreatic glucagon's satiety effect. Physiol. Behav. 31, 391–394 (1983).

    Article  CAS  PubMed  Google Scholar 

  81. Schulman, J. L., Carleton, J. L., Whitney, G. & Whitehorn, J. C. Effect of glucagon on food intake and body weight in man. J. Appl. Physiol. 11, 419–421 (1957).

    Article  CAS  PubMed  Google Scholar 

  82. Penick, S. B. & Hinkle, L. E. Jr. Depression of food intake induced in healthy subjects by glucagon. N. Engl. J. Med. 264, 893–897 (1961).

    Article  CAS  PubMed  Google Scholar 

  83. Geary, N., Kissileff, H. R., Pi-Sunyer, F. X. & Hinton, V. Individual, but not simultaneous, glucagon and cholecystokinin infusions inhibit feeding in men. Am. J. Physiol. 262, R975–R980 (1992).

    Article  CAS  PubMed  Google Scholar 

  84. Glick, G., Parmley, W. W., Wechsler, A. S. & Sonnenblick, E. H. Glucagon. Its enhancement of cardiac performance in the cat and dog and persistence of its inotropic action despite beta-receptor blockade with propranolol. Circ. Res. 22, 789–799 (1968).

    Article  CAS  PubMed  Google Scholar 

  85. Liljenquist, J. E. et al. Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men. J. Clin. Invest. 53, 190–197 (1974).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Pocai, A. et al. Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58, 2258–2266 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Day, J. W. et al. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat. Chem. Biol. 5, 749–757 (2009).

    Article  CAS  PubMed  Google Scholar 

  88. Borg, C. M. et al. Progressive rise in gut hormone levels after Roux-en-Y gastric bypass suggests gut adaptation and explains altered satiety. Br. J. Surg. 93, 210–215 (2006).

    Article  CAS  PubMed  Google Scholar 

  89. Ghatei, M. A., Uttenthal, L. O., Christofides, N. D., Bryant, M. G. & Bloom, S. R. Molecular forms of human enteroglucagon in tissue and plasma: plasma responses to nutrient stimuli in health and in disorders of the upper gastrointestinal tract. J. Clin. Endocrinol. Metab. 57, 488–495 (1983).

    Article  CAS  PubMed  Google Scholar 

  90. Polak, J. M., Bloom, S., Coulling, I. & Pearse, A. G. Immunofluorescent localization of enteroglucagon cells in the gastrointestinal tract of the dog. Gut 12, 311–318 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Biedzinski, T. M., Bataille, D., Devaux, M. A. & Sarles, H. The effect of oxyntomodulin (glucagon-37) and glucagon on exocrine pancreatic secretion in the conscious rat. Peptides 8, 967–972 (1987).

    Article  CAS  PubMed  Google Scholar 

  92. Cohen, M. A. et al. Oxyntomodulin suppresses appetite and reduces food intake in humans. J. Clin. Endocrinol. Metab. 88, 4696–4701 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Dubrasquet, M., Bataille, D. & Gespach, C. Oxyntomodulin (glucagon-37 or bioactive enteroglucagon): a potent inhibitor of pentagastrin-stimulated acid secretion in rats. Biosci. Rep. 2, 391–395 (1982).

    Article  CAS  PubMed  Google Scholar 

  94. Schjoldager, B., Mortensen, P. E., Myhre, J., Christiansen, J. & Holst, J. J. Oxyntomodulin from distal gut. Role in regulation of gastric and pancreatic functions. Dig. Dis. Sci. 34, 1411–1419 (1989).

    Article  CAS  PubMed  Google Scholar 

  95. Wynne, K. et al. Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes 54, 2390–2395 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Wynne, K. et al. Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. Int. J. Obes. (Lond.) 30, 1729–1736 (2006).

    Article  CAS  Google Scholar 

  97. Bataille, D. et al. Isolation of glucagon-37 (bioactive enteroglucagon/oxyntomodulin) from porcine jejuno-ileum. Characterization of the peptide. FEBS Lett. 146, 79–86 (1982).

    Article  CAS  PubMed  Google Scholar 

  98. Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology 127, 546–558 (2004).

    Article  CAS  PubMed  Google Scholar 

  99. Dakin, C. L. et al. Oxyntomodulin inhibits food intake in the rat. Endocrinology 142, 4244–4250 (2001).

    Article  CAS  PubMed  Google Scholar 

  100. Druce, M. R. et al. Investigation of structure-activity relationships of Oxyntomodulin (Oxm) using Oxm analogs. Endocrinology 150, 1712–1722 (2009).

    Article  CAS  PubMed  Google Scholar 

  101. Zhu, L. et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1–38). J. Biol. Chem. 278, 22418–22423 (2003).

    Article  CAS  PubMed  Google Scholar 

  102. Liddle, R. A., Goldfine, I. D., Rosen, M. S., Taplitz, R. A. & Williams, J. A. Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J. Clin. Invest. 75, 1144–1152 (1985).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Polak, J. M. et al. Identification of cholecystokinin-secreting cells. Lancet 2, 1016–1018 (1975).

    Article  CAS  PubMed  Google Scholar 

  104. Schwartz, G. J., McHugh, P. R. & Moran, T. H. Integration of vagal afferent responses to gastric loads and cholecystokinin in rats. Am. J. Physiol. 261, R64–R69 (1991).

    Article  CAS  PubMed  Google Scholar 

  105. Takahashi, T., May, D. & Owyang, C. Cholinergic dependence of gallbladder response to cholecystokinin in the guinea pig in vivo. Am. J. Physiol. 261, G565–G569 (1991).

    Article  CAS  PubMed  Google Scholar 

  106. Fried, M. et al. Role of cholecystokinin in the regulation of gastric emptying and pancreatic enzyme secretion in humans. Studies with the cholecystokinin-receptor antagonist loxiglumide. Gastroenterology 101, 503–511 (1991).

    Article  CAS  PubMed  Google Scholar 

  107. Beglinger, S. et al. Role of fat hydrolysis in regulating glucagon-like peptide-1 secretion. J. Clin. Endocrinol. Metab. 95, 879–886 (2010).

    Article  CAS  PubMed  Google Scholar 

  108. Barden, N. et al. Regional distributions of somatostatin and cholecystokinin-like immunoreactivities in rat and bovine brain. Peptides 2, 299–302 (1981).

    Article  CAS  PubMed  Google Scholar 

  109. Gibbs, J., Young, R. C. & Smith, G. P. Cholecystokinin elicits satiety in rats with open gastric fistulas. Nature 245, 323–325 (1973).

    Article  CAS  PubMed  Google Scholar 

  110. West, D. B., Fey, D. & Woods, S. C. Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. Am. J. Physiol. 246, R776–R787 (1984).

    CAS  PubMed  Google Scholar 

  111. Kissileff, H. R., Pi-Sunyer, F. X., Thornton, J. & Smith, G. P. C-terminal octapeptide of cholecystokinin decreases food intake in man. Am. J. Clin. Nutr. 34, 154–160 (1981).

    Article  CAS  PubMed  Google Scholar 

  112. Jordan, J. et al. Stimulation of cholecystokinin-A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin. Pharmacol. Ther. 83, 281–287 (2008).

    Article  CAS  PubMed  Google Scholar 

  113. Asin, K. E. et al. Behavioral effects of A71623, a highly selective CCK-A agonist tetrapeptide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 263, R125–R135 (1992).

    Article  CAS  Google Scholar 

  114. Simmons, R. D., Kaiser, F. C. & Hudzik, T. J. Behavioral effects of AR-R 15849, a highly selective CCK-A agonist. Pharmacol. Biochem. Behav. 62, 549–557 (1999).

    Article  CAS  PubMed  Google Scholar 

  115. Merino, B., Cano, V., Guzmán, R., Somoza, B. & Ruiz-Gayo, M. Leptin-mediated hypothalamic pathway of cholecystokinin (CCK-8) to regulate body weight in free-feeding rats. Endocrinology 149, 1994–2000 (2008).

    Article  CAS  PubMed  Google Scholar 

  116. Date, Y. et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology 141, 4255–4261 (2000).

    Article  CAS  PubMed  Google Scholar 

  117. Kojima, M. et al. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660 (1999).

    Article  CAS  PubMed  Google Scholar 

  118. Yang, J., Brown, M. S., Liang, G., Grishin, N. V. & Goldstein, J. L. Identification of the acyltransferase that octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell 132, 387–396 (2008).

    Article  CAS  PubMed  Google Scholar 

  119. Tschöp, M., Smiley, D. L. & Heiman, M. L. Ghrelin induces adiposity in rodents. Nature 407, 908–913 (2000).

    Article  PubMed  Google Scholar 

  120. Cummings, D. E. et al. A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719 (2001).

    Article  CAS  PubMed  Google Scholar 

  121. Cummings, D. E., Frayo, R. S., Marmonier, C., Aubert, R. & Chapelot, D. Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues. Am. J. Physiol. Endocrinol. Metab. 287, E297–E304 (2004).

    Article  CAS  PubMed  Google Scholar 

  122. Wren, A. M. et al. Ghrelin enhances appetite and increases food intake in humans. J. Clin. Endocrinol. Metab. 86, 5992 (2001).

    Article  CAS  PubMed  Google Scholar 

  123. Tschöp, M. et al. Circulating ghrelin levels are decreased in human obesity. Diabetes 50, 707–709 (2001).

    Article  PubMed  Google Scholar 

  124. English, P. J., Ghatei, M. A., Malik, I. A., Bloom, S. R. & Wilding, J. P. Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87, 2984 (2002).

    Article  CAS  PubMed  Google Scholar 

  125. Druce, M. R. et al. Ghrelin increases food intake in obese as well as lean subjects. Int. J. Obes. (Lond.) 29, 1130–1136 (2005).

    Article  CAS  Google Scholar 

  126. Neary, N. M. et al. Ghrelin increases energy intake in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J. Clin. Endocrinol. Metab. 89, 2832–2836 (2004).

    Article  CAS  PubMed  Google Scholar 

  127. Nass, R. et al. Effects of an oral ghrelin mimetic on body composition and clinical outcomes in healthy older adults: a randomized trial. Ann. Intern. Med. 149, 601–611 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  128. Rosenbaum, M. et al. Low-dose leptin reverses skeletal muscle, autonomic, and neuroendocrine adaptations to maintenance of reduced weight. J. Clin. Invest. 115, 3579–3586 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Chikunguwo, S. et al. Influence of obesity and surgical weight loss on thyroid hormone levels. Surg. Obes. Relat. Dis. 3, 631–635 (2007).

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. Bloom.

Ethics declarations

Competing interests

S. R. Bloom declares an association with the following company: Wyeth Pharmaceuticals. S. R. Bloom is the inventor of patents describing the use of gut hormones and their analogs and derivatives in the treatment of obesity, and is a consultant for Thiakis, a subsidiary of Wyeth Pharmaceuticals. The other authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Field, B., Chaudhri, O. & Bloom, S. Bowels control brain: gut hormones and obesity. Nat Rev Endocrinol 6, 444–453 (2010). https://doi.org/10.1038/nrendo.2010.93

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2010.93

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing