Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Reversing the tide — diagnosis and prevention of T2DM in populations of African descent

Key Points

  • Although African, Caribbean and African-American populations are all groups of African descent, cultural and historical differences mean that strategies for the diagnosis and prevention of type 2 diabetes mellitus (T2DM) in each population require customization

  • In Africa, as T2DM occurs across the entire range of BMIs, enrolment criteria for both screening and prevention trials must consider that even normal-weight African individuals are at risk

  • Both Caribbean and African-American individuals have experienced the twin epidemics of obesity and T2DM; however, Caribbean individuals seem to have worse glycaemic control, lower health literacy and a higher rate of complications

  • When intensive lifestyle interventions are undertaken in Africa and the Caribbean, both the design and outcome must be appropriate for the specific African-descent population enrolled

  • Reducing the rate of undiagnosed T2DM in African-descent populations requires optimization of current screening tests by combining HbA1c with fasting plasma glucose and evaluating new tests such as glycated albumin

  • Large studies are necessary in African-descent populations to identify the risk of T2DM due to genetics, epigenetics and gene–environment interactions

Abstract

Populations of African descent are at the forefront of the worldwide epidemic of type 2 diabetes mellitus (T2DM). The burden of T2DM is amplified by diagnosis after preventable complications of the disease have occurred. Earlier detection would result in a reduction in undiagnosed T2DM, more accurate statistics, more informed resource allocation and better health. An underappreciated factor contributing to undiagnosed T2DM in populations of African descent is that screening tests for hyperglycaemia, specifically, fasting plasma glucose and HbA1c, perform sub-optimally in these populations. To offset this problem, combining tests or adding glycated albumin (a nonfasting marker of glycaemia), might be the way forward. However, differences in diet, exercise, BMI, environment, gene–environment interactions and the prevalence of sickle cell trait mean that neither diagnostic tests nor interventions will be uniformly effective in individuals of African, Caribbean or African-American descent. Among these three populations of African descent, intensive lifestyle interventions have been reported in only the African-American population, in which they have been found to provide effective primary prevention of T2DM but not secondary prevention. Owing to a lack of health literacy and poor glycaemic control in Africa and the Caribbean, customized lifestyle interventions might achieve both secondary and primary prevention. Overall, diagnosis and prevention of T2DM requires innovative strategies that are sensitive to the diversity that exists within populations of African descent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Correlation between visceral adipose tissue (VAT) and waist circumference.
Figure 2: Regions of Africa exposed to undernutrition.
Figure 3: Diagnostic sensitivity of HbA1c and glycated albumin according to BMI.

Similar content being viewed by others

References

  1. International Diabetes Federation. IDF diabetes atlas — 7 th edition. IDF http://www.oedg.at/pdf/1606_IDF_Atlas_2015_UK.pdf (2015).

  2. United Nations. Resolution adopted by the General Assembly: scope, modalities, format and organization of the high-level meeting of the General Assembly on the prevention and control of non-communicable diseases. UN http://www.un.org/en/ga/president/65/issues/A-RES-65-238 (2011).

  3. World Health Organization. Global action plan for the prevention and control of noncommunicable diseases 2013–2020. WHO http://apps.who.int/iris/bitstream/10665/94384/1/9789241506236_eng.pdf?ua=1 (2013).

  4. American Diabetes Association. 10. Microvascular complications and foot care. Diabetes Care 40, S88–S98 (2017).

  5. American Diabetes Association. 9. Cardiovascular disease and risk management. Diabetes Care 40, S75–S87 (2017).

  6. Hennis, A., Wu, S. Y., Nemesure, B., Li, X. & Leske, M. C. Diabetes in a Caribbean population: epidemiological profile and implications. Int. J. Epidemiol. 31, 234–239 (2002).

    Article  PubMed  Google Scholar 

  7. Menke, A., Casagrande, S., Geiss, L. & Cowie, C. C. Prevalence of and trends in diabetes among adults in the United States, 1988–2012. JAMA 314, 1021–1029 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Commodore-Mensah, Y., Himmelfarb, C. D., Agyemang, C. & Sumner, A. E. Cardiometabolic health in African immigrants to the United States: a call to re-examine research on African-descent populations. Ethn. Dis. 25, 373–380 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Manne-Goehler, J. et al. Diabetes diagnosis and care in sub-Saharan Africa: pooled analysis of individual data from 12 countries. Lancet Diabetes Endocrinol. 4, 903–912 (2016).

    Article  PubMed  Google Scholar 

  10. Mbanya, J. C., Motala, A. A., Sobngwi, E., Assah, F. K. & Enoru, S. T. Diabetes in sub-Saharan Africa. Lancet 375, 2254–2266 (2010).

    Article  PubMed  Google Scholar 

  11. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 387, 1513–1530 (2016).

  12. Werfalli, M., Engel, M. E., Musekiwa, A., Kengne, A. P. & Levitt, N. S. The prevalence of type 2 diabetes among older people in Africa: a systematic review. Lancet Diabetes Endocrinol. 4, 72–84 (2016).

    Article  PubMed  Google Scholar 

  13. Dabone, C., Delisle, H. & Receveur, O. Predisposing, facilitating and reinforcing factors of healthy and unhealthy food consumption in schoolchildren: a study in Ouagadougou, Burkina Faso. Glob. Health Promot. 20, 68–77 (2013).

    Article  PubMed  Google Scholar 

  14. Igumbor, E. U. et al. “Big food,” the consumer food environment, health, and the policy response in South Africa. PLoS Med. 9, e1001253 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Keding, G. B., Msuya, J. M., Maass, B. L. & Krawinkel, M. B. Dietary patterns and nutritional health of women: the nutrition transition in rural Tanzania. Food Nutr. Bull. 32, 218–226 (2011).

    Article  PubMed  Google Scholar 

  16. Obirikorang, Y. et al. Knowledge and lifestyle-associated prevalence of obesity among newly diagnosed type II diabetes mellitus patients attending diabetic clinic at Komfo Anokye teaching hospital, Kumasi, Ghana: a hospital-based cross-sectional study. J. Diabetes Res. 2016, 9759241 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Oyewole, O. E. & Atinmo, T. Nutrition transition and chronic diseases in Nigeria. Proc. Nutr. Soc. 74, 460–465 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Assah, F. K., Ekelund, U., Brage, S., Mbanya, J. C. & Wareham, N. J. Free-living physical activity energy expenditure is strongly related to glucose intolerance in Cameroonian adults independently of obesity. Diabetes Care 32, 367–369 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Assah, F. K., Ekelund, U., Brage, S., Mbanya, J. C. & Wareham, N. J. Urbanization, physical activity, and metabolic health in sub-Saharan Africa. Diabetes Care 34, 491–496 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Keding, G. Nutrition transition in rural Tanzania and Kenya. World Rev. Nutr. Diet. 115, 68–81 (2016).

    Article  PubMed  Google Scholar 

  21. NCD Risk Factor Collaboration (NCD-RisC). Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 387, 1377–1396 (2016).

  22. Dagenais, G. R. et al. Variations in diabetes prevalence in low-, middle-, and high-income countries: results from the Prospective Urban and Rural Epidemiology Study. Diabetes Care 39, 780–787 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. O'Connor, M. Y. et al. Worse cardiometabolic health in African immigrant men than African American men: reconsideration of the healthy immigrant effect. Metab. Syndr. Relat. Disord. 12, 347–353 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Ukegbu, U. J. et al. Metabolic syndrome does not detect metabolic risk in African men living in the U.S. Diabetes Care 34, 2297–2299 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  25. de Rooij, S. R., Roseboom, T. J. & Painter, R. C. Famines in the last 100 years: implications for diabetes. Curr. Diab. Rep. 14, 536 (2014).

    Article  PubMed  Google Scholar 

  26. Hult, M. et al. Hypertension, diabetes and overweight: looming legacies of the Biafran famine. PLoS ONE 5, e13582 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Abeelen, A. F. et al. Famine exposure in the young and the risk of type 2 diabetes in adulthood. Diabetes 61, 2255–2260 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. UNICEF USA. Emergency relief: famine threatens 2.5 million children in Africa and the Middle East. UNICEF USA https://www.unicefusa.org/stories/famine-threatens-25-million-children-africa-and-middle-east/32005 (2017).

  29. Sobngwi, E. et al. Ketosis-prone type 2 diabetes mellitus and human herpesvirus 8 infection in sub-Saharan Africans. JAMA 299, 2770–2776 (2008).

    Article  CAS  PubMed  Google Scholar 

  30. Boyne, M. S. Diabetes in the Caribbean: trouble in paradise. Insulin 4, 94–105 (2009).

    Article  Google Scholar 

  31. Ferguson, T. S., Tulloch-Reid, M. K. & Wilks, R. J. The epidemiology of diabetes mellitus in Jamaica and the Caribbean: a historical review. West Indian Med. J. 59, 259–264 (2010).

    CAS  PubMed  Google Scholar 

  32. Boyne, M. S. et al. Energetic determinants of glucose tolerance status in Jamaican adults. Eur. J. Clin. Nutr. 58, 1666–1668 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Cunningham-Myrie, C. et al. Diabetes mellitus in Jamaica: sex differences in burden, risk factors, awareness, treatment and control in a developing country. Trop. Med. Int. Health 18, 1365–1378 (2013).

    Article  PubMed  Google Scholar 

  34. Wilks, R. et al. Diabetes in the Caribbean: results of a population survey from Spanish Town, Jamaica. Diabet. Med. 16, 875–883 (1999).

    Article  CAS  PubMed  Google Scholar 

  35. Howitt, C. et al. A cross-sectional study of physical activity and sedentary behaviours in a Caribbean population: combining objective and questionnaire data to guide future interventions. BMC Public Health 16, 1036 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ragoobirsingh, D., Lewis-Fuller, E. & Morrison, E. Y. The Jamaican Diabetes Survey. A protocol for the Caribbean. Diabetes Care 18, 1277–1279 (1995).

    Article  CAS  PubMed  Google Scholar 

  37. Ferguson, T. S. et al. Prevalence of chronic kidney disease among patients attending a specialist diabetes clinic in Jamaica. West Indian Med. J. 64, 201–208 (2015).

    CAS  PubMed  Google Scholar 

  38. Leske, M. C. et al. Nine-year incidence of diabetic retinopathy in the Barbados Eye Studies. Arch. Ophthalmol. 124, 250–255 (2006).

    Article  PubMed  Google Scholar 

  39. Hambleton, I. R. et al. All-cause mortality after diabetes-related amputation in Barbados: a prospective case-control study. Diabetes Care 32, 306–307 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hennis, A. J., Fraser, H. S., Jonnalagadda, R., Fuller, J. & Chaturvedi, N. Explanations for the high risk of diabetes-related amputation in a Caribbean population of black african descent and potential for prevention. Diabetes Care 27, 2636–2641 (2004).

    Article  PubMed  Google Scholar 

  41. Gayle, K. A. et al. Foot care and footwear practices among patients attending a specialist diabetes clinic in Jamaica. Clin. Pract. 2, e85 (2012).

    PubMed  PubMed Central  Google Scholar 

  42. Flegal, K. M., Carroll, M. D., Ogden, C. L. & Johnson, C. L. Prevalence and trends in obesity among US adults, 1999–2000. JAMA 288, 1723–1727 (2002).

    Article  PubMed  Google Scholar 

  43. Menke, A., Rust, K. F., Fradkin, J., Cheng, Y. J. & Cowie, C. C. Associations between trends in race/ethnicity, aging, and body mass index with diabetes prevalence in the United States: a series of cross-sectional studies. Ann. Intern. Med. 161, 328–335 (2014).

    Article  PubMed  Google Scholar 

  44. Kuczmarski, R. J., Flegal, K. M., Campbell, S. M. & Johnson, C. L. Increasing prevalence of overweight among US adults. The National Health and Nutrition Examination Surveys, 1960 to 1991. JAMA 272, 205–211 (1994).

    Article  CAS  PubMed  Google Scholar 

  45. Ogden, C. L., Carroll, M. D., Kit, B. K. & Flegal, K. M. Prevalence of childhood and adult obesity in the United States, 2011–2012. JAMA 311, 806–814 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Cowie, C. C. et al. Prevalence of diabetes and high risk for diabetes using A1C criteria in the U.S. population in 1988–2006. Diabetes Care 33, 562–568 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Cowie, C. C. et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999–2002. Diabetes Care 29, 1263–1268 (2006).

    Article  PubMed  Google Scholar 

  48. Herman, W. H. & Rothberg, A. E. Prevalence of diabetes in the United States: a glimmer of hope? JAMA 314, 1005–1007 (2015).

    Article  PubMed  Google Scholar 

  49. Goldberg, J. B., Goodney, P. P., Cronenwett, J. L. & Baker, F. The effect of risk and race on lower extremity amputations among Medicare diabetic patients. J. Vasc. Surg. 56, 1663–1668 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Harris, M. I., Klein, R., Cowie, C. C., Rowland, M. & Byrd-Holt, D. D. Is the risk of diabetic retinopathy greater in non-Hispanic blacks and Mexican Americans than in non-Hispanic whites with type 2 diabetes? A U.S. population study. Diabetes Care 21, 1230–1235 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Sinha, S. K. et al. Association of race/ethnicity, inflammation, and albuminuria in patients with diabetes and early chronic kidney disease. Diabetes Care 37, 1060–1068 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Varma, R. et al. Prevalence of and risk factors for diabetic macular edema in the United States. JAMA Ophthalmol. 132, 1334–1340 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Herman, W. H. et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo–Danish–Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care 38, 1449–1455 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Balk, E. M. et al. Combined diet and physical activity promotion programs to prevent type 2 diabetes among persons at increased risk: a systematic review for the Community Preventive Services Task Force. Ann. Intern. Med. 163, 437–451 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Schellenberg, E. S., Dryden, D. M., Vandermeer, B., Ha, C. & Korownyk, C. Lifestyle interventions for patients with and at risk for type 2 diabetes: a systematic review and meta-analysis. Ann. Intern. Med. 159, 543–551 (2013).

    Article  PubMed  Google Scholar 

  56. Knowler, W. C. et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N. Engl. J. Med. 346, 393–403 (2002).

    Article  CAS  PubMed  Google Scholar 

  57. Wing, R. R. et al. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. N. Engl. J. Med. 369, 145–154 (2013).

    Article  CAS  PubMed  Google Scholar 

  58. Keyserling, T. C. et al. A randomized trial of an intervention to improve self-care behaviors of African-American women with type 2 diabetes: impact on physical activity. Diabetes Care 25, 1576–1583 (2002).

    Article  PubMed  Google Scholar 

  59. Mayer-Davis, E. J. et al. Pounds off with empowerment (POWER): a clinical trial of weight management strategies for black and white adults with diabetes who live in medically underserved rural communities. Am. J. Public Health 94, 1736–1742 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Samuel-Hodge, C. D. et al. Family PArtners in Lifestyle Support (PALS): family-based weight loss for African American adults with type 2 diabetes. Obesity (Silver Spring) 25, 45–55 (2017).

    Article  Google Scholar 

  61. Samuel-Hodge, C. D. et al. A randomized trial of a church-based diabetes self-management program for African Americans with type 2 diabetes. Diabetes Educ. 35, 439–454 (2009).

    Article  PubMed  Google Scholar 

  62. Haffner, S. M., Stern, M. P., Hazuda, H. P., Mitchell, B. D. & Patterson, J. K. Cardiovascular risk factors in confirmed prediabetic individuals. Does the clock for coronary heart disease start ticking before the onset of clinical diabetes? JAMA 263, 2893–2898 (1990).

    Article  CAS  PubMed  Google Scholar 

  63. Cooper, R. S. et al. Prevalence of NIDDM among populations of the African diaspora. Diabetes Care 20, 343–348 (1997).

    Article  CAS  PubMed  Google Scholar 

  64. Echouffo-Tcheugui, J. B., Mayige, M., Ogbera, A. O., Sobngwi, E. & Kengne, A. P. Screening for hyperglycemia in the developing world: rationale, challenges and opportunities. Diabetes Res. Clin. Pract. 98, 199–208 (2012).

    Article  PubMed  Google Scholar 

  65. Barry, E. et al. Efficacy and effectiveness of screen and treat policies in prevention of type 2 diabetes: systematic review and meta-analysis of screening tests and interventions. BMJ 356, i6538 (2017).

    Article  PubMed  Google Scholar 

  66. Davidson, M. B. & Pan, D. Epidemiological ramifications of diagnosing diabetes with HbA1c levels. J. Diabetes Complications 28, 464–469 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Levitt, N. S. et al. Application of the new ADA criteria for the diagnosis of diabetes to population studies in sub-Saharan Africa. Diabet. Med. 17, 381–385 (2000).

    Article  CAS  PubMed  Google Scholar 

  68. Motala, A. A., Esterhuizen, T., Gouws, E., Pirie, F. J. & Omar, M. A. Diabetes and other disorders of glycemia in a rural South African community: prevalence and associated risk factors. Diabetes Care 31, 1783–1788 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sumner, A. E. et al. Detection of abnormal glucose tolerance in Africans is improved by combining A1C with fasting glucose: the Africans in America Study. Diabetes Care 38, 213–219 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. American Diabetes Association. 2. Classification and diagnosis of diabetes. Diabetes Care 40, S11–S24 (2017).

  71. [No authors listed.] Classification and diagnosis of diabetes mellitus and other categories of glucose intolerance. Diabetes 28, 1039–1057 (1979).

  72. Colagiuri, S. et al. Glycemic thresholds for diabetes-specific retinopathy: implications for diagnostic criteria for diabetes. Diabetes Care 34, 145–150 (2011).

    Article  PubMed  Google Scholar 

  73. Weyer, C., Bogardus, C. & Pratley, R. E. Metabolic characteristics of individuals with impaired fasting glucose and/or impaired glucose tolerance. Diabetes 48, 2197–2203 (1999).

    Article  CAS  PubMed  Google Scholar 

  74. [No authors listed.] Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care 20, 1183–1197 (1997).

  75. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 27, S5–S10 (2004).

  76. [No authors listed.] Summary of revisions for the 2010 Clinical Practice Recommendations. Diabetes Care 33, S3 (2010).

  77. Gillett, M. J. International Expert Committee report on the role of the A1c assay in the diagnosis of diabetes: Diabetes Care 2009; 32(7): 1327–1334. Clin. Biochem. Rev. 30, 197–200 (2009).

    PubMed  PubMed Central  Google Scholar 

  78. Chung, S. T., Chacko, S. K., Sunehag, A. L. & Haymond, M. W. Measurements of gluconeogenesis and glycogenolysis: a methodological review. Diabetes 64, 3996–4010 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. DeLany, J. P. et al. Racial differences in peripheral insulin sensitivity and mitochondrial capacity in the absence of obesity. J. Clin. Endocrinol. Metab. 99, 4307–4314 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Ellis, A. C., Alvarez, J. A., Granger, W. M., Ovalle, F. & Gower, B. A. Ethnic differences in glucose disposal, hepatic insulin sensitivity, and endogenous glucose production among African American and European American women. Metabolism 61, 634–640 (2012).

    Article  CAS  PubMed  Google Scholar 

  81. Goedecke, J. H. et al. Ethnic differences in hepatic and systemic insulin sensitivity and their associated determinants in obese black and white South African women. Diabetologia 58, 2647–2652 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Osei, K., Cottrell, D. A. & Harris, B. Differences in basal and poststimulation glucose homeostasis in nondiabetic first degree relatives of black and white patients with type 2 diabetes mellitus. J. Clin. Endocrinol. Metab. 75, 82–86 (1992).

    CAS  PubMed  Google Scholar 

  83. Guerrero, R., Vega, G. L., Grundy, S. M. & Browning, J. D. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology 49, 791–801 (2009).

    Article  PubMed  Google Scholar 

  84. Samuel, V. T. & Shulman, G. I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest. 126, 12–22 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Bianchi, C. et al. Pathogenetic mechanisms and cardiovascular risk: differences between HbA1c and oral glucose tolerance test for the diagnosis of glucose tolerance. Diabetes Care 35, 2607–2612 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lorenzo, C. et al. A1C between 5.7 and 6.4% as a marker for identifying pre-diabetes, insulin sensitivity and secretion, and cardiovascular risk factors: the Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 33, 2104–2109 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Olson, D. E. et al. Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 33, 2184–2189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  88. English, E. et al. The effect of anaemia and abnormalities of erythrocyte indices on HbA1c analysis: a systematic review. Diabetologia 58, 1409–1421 (2015).

    Article  CAS  PubMed  Google Scholar 

  89. Hare, M. J., Shaw, J. E. & Zimmet, P. Z. Current controversies in the use of haemoglobin A1c. J. Intern. Med. 271, 227–236 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Lacy, M. E. et al. Association of sickle cell trait with hemoglobin A1c in African Americans. JAMA 317, 507–515 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Piel, F. B. et al. The distribution of haemoglobin C and its prevalence in newborns in Africa. Sci. Rep. 3, 1671 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Piel, F. B. et al. Global epidemiology of sickle haemoglobin in neonates: a contemporary geostatistical model-based map and population estimates. Lancet 381, 142–151 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Beutler, E. & West, C. Hematologic differences between African-Americans and whites: the roles of iron deficiency and α-thalassemia on hemoglobin levels and mean corpuscular volume. Blood 106, 740–745 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Mei, Z. et al. Assessment of iron status in US pregnant women from the National Health and Nutrition Examination Survey (NHANES), 1999–2006. Am. J. Clin. Nutr. 93, 1312–1320 (2011).

    Article  CAS  PubMed  Google Scholar 

  95. Hanchard, N. A., Hambleton, I., Harding, R. M. & McKenzie, C. A. The frequency of the sickle allele in Jamaica has not declined over the last 22 years. Br. J. Haematol. 130, 939–942 (2005).

    Article  CAS  PubMed  Google Scholar 

  96. Modell, B. & Darlison, M. Global epidemiology of haemoglobin disorders and derived service indicators. Bull. World Health Organ. 86, 480–487 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Taylor, C., Kavanagh, P. & Zuckerman, B. Sickle cell trait — neglected opportunities in the era of genomic medicine. JAMA 311, 1495–1496 (2014).

    Article  CAS  PubMed  Google Scholar 

  98. Danese, E., Montagnana, M., Nouvenne, A. & Lippi, G. Advantages and pitfalls of fructosamine and glycated albumin in the diagnosis and treatment of diabetes. J. Diabetes Sci. Technol. 9, 169–176 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Hsu, P. et al. A comparison of glycated albumin and glycosylated hemoglobin for the screening of diabetes mellitus in Taiwan. Atherosclerosis 242, 327–333 (2015).

    Article  CAS  PubMed  Google Scholar 

  100. Ikezaki, H. et al. Glycated albumin as a diagnostic tool for diabetes in a general Japanese population. Metabolism 64, 698–705 (2015).

    Article  CAS  PubMed  Google Scholar 

  101. Shima, K., Abe, F., Chikakiyo, H. & Ito, N. The relative value of glycated albumin, hemoglobin A1c and fructosamine when screening for diabetes mellitus. Diabetes Res. Clin. Pract. 7, 243–250 (1989).

    Article  CAS  PubMed  Google Scholar 

  102. Wu, W. C. et al. Serum glycated albumin to guide the diagnosis of diabetes mellitus. PLoS ONE 11, e0146780 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Chan, C. L. et al. Screening for type 2 diabetes and prediabetes in obese youth: evaluating alternate markers of glycemia — 1,5-anhydroglucitol, fructosamine, and glycated albumin. Pediatr. Diabetes 17, 206–211 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Sumner, A. E. et al. A1C combined with glycated albumin improves detection of prediabetes in Africans: the Africans in America Study. Diabetes Care 39, 271–277 (2016).

    CAS  PubMed  Google Scholar 

  105. Selvin, E. et al. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2, 279–288 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sumner, A. E. et al. Glycated albumin identifies prediabetes not detected by hemoglobin A1c: the Africans in America Study. Clin. Chem. 62, 1524–1532 (2016).

    Article  CAS  PubMed  Google Scholar 

  107. Koga, M., Hirata, T., Kasayama, S., Ishizaka, Y. & Yamakado, M. Body mass index negatively regulates glycated albumin through insulin secretion in patients with type 2 diabetes mellitus. Clin. Chim. Acta 438, 19–23 (2015).

    Article  CAS  PubMed  Google Scholar 

  108. Koga, M., Matsumoto, S., Saito, H. & Kasayama, S. Body mass index negatively influences glycated albumin, but not glycated hemoglobin, in diabetic patients. Endocr. J. 53, 387–391 (2006).

    Article  CAS  PubMed  Google Scholar 

  109. Koga, M. et al. Negative association of obesity and its related chronic inflammation with serum glycated albumin but not glycated hemoglobin levels. Clin. Chim. Acta 378, 48–52 (2007).

    Article  CAS  PubMed  Google Scholar 

  110. Prasad, R. B. & Groop, L. Genetics of type 2 diabetes-pitfalls and possibilities. Genes (Basel) 6, 87–123 (2015).

    Article  CAS  Google Scholar 

  111. Ng, M. C. Genetics of type 2 diabetes in African Americans. Curr. Diab. Rep. 15, 74 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Fuchsberger, C. et al. The genetic architecture of type 2 diabetes. Nature 536, 41–47 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Lettre, G. et al. Genome-wide association study of coronary heart disease and its risk factors in 8,090 African Americans: the NHLBI CARe Project. PLoS Genet. 7, e1001300 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Ng, M. C. et al. Meta-analysis of genome-wide association studies in African Americans provides insights into the genetic architecture of type 2 diabetes. PLoS Genet. 10, e1004517 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Palmer, N. D. et al. A genome-wide association search for type 2 diabetes genes in African Americans. PLoS ONE 7, e29202 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Saxena, R. et al. Large-scale gene-centric meta-analysis across 39 studies identifies type 2 diabetes loci. Am. J. Hum. Genet. 90, 410–425 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  117. Wessel, J. et al. Low-frequency and rare exome chip variants associate with fasting glucose and type 2 diabetes susceptibility. Nat. Commun. 6, 5897 (2015).

    Article  PubMed  CAS  Google Scholar 

  118. Dooley, J. et al. Genetic predisposition for beta cell fragility underlies type 1 and type 2 diabetes. Nat. Genet. 48, 519–527 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Narimatsu, H. Gene-environment interactions in preventive medicine: current status and expectations for the future. Int. J. Mol. Sci. 18, E302 (2017).

    Article  CAS  PubMed  Google Scholar 

  120. Adeleye, J. O. & Abbiyesuku, F. M. Glucose and insulin responses in offspring of Nigerian type 2 diabetics. Afr. J. Med. Med. Sci. 31, 253–257 (2002).

    CAS  PubMed  Google Scholar 

  121. Erasmus, R. T. et al. Importance of family history in type 2 black South African diabetic patients. Postgrad. Med. J. 77, 323–325 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Goldfine, A. B. et al. Insulin resistance is a poor predictor of type 2 diabetes in individuals with no family history of disease. Proc. Natl Acad. Sci. USA 100, 2724–2729 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Mbanya, J. C., Pani, L. N., Mbanya, D. N., Sobngwi, E. & Ngogang, J. Reduced insulin secretion in offspring of African type 2 diabetic parents. Diabetes Care 23, 1761–1765 (2000).

    Article  CAS  PubMed  Google Scholar 

  124. Rotimi, C., Cooper, R., Cao, G., Sundarum, C. & McGee, D. Familial aggregation of cardiovascular diseases in African-American pedigrees. Genet. Epidemiol. 11, 397–407 (1994).

    Article  CAS  PubMed  Google Scholar 

  125. Haupt, A. et al. Gene variants of TCF7L2 influence weight loss and body composition during lifestyle intervention in a population at risk for type 2 diabetes. Diabetes 59, 747–750 (2010).

    Article  CAS  PubMed  Google Scholar 

  126. Kilpelainen, T. O. et al. SNPs in PPARG associate with type 2 diabetes and interact with physical activity. Med. Sci. Sports Exerc. 40, 25–33 (2008).

    Article  CAS  PubMed  Google Scholar 

  127. Reinehr, T. et al. Evidence for an influence of TCF7L2 polymorphism rs7903146 on insulin resistance and sensitivity indices in overweight children and adolescents during a lifestyle intervention. Int. J. Obes. (Lond.) 32, 1521–1524 (2008).

    Article  CAS  Google Scholar 

  128. Ruchat, S. M. et al. Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia 53, 679–689 (2010).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, J. et al. Variants of transcription factor 7-like 2 (TCF7L2) gene predict conversion to type 2 diabetes in the Finnish Diabetes Prevention Study and are associated with impaired glucose regulation and impaired insulin secretion. Diabetologia 50, 1192–1200 (2007).

    Article  CAS  PubMed  Google Scholar 

  130. Botden, I. P. et al. Variants in the SIRT1 gene may affect diabetes risk in interaction with prenatal exposure to famine. Diabetes Care 35, 424–426 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Corella, D. et al. CLOCK gene variation is associated with incidence of type-2 diabetes and cardiovascular diseases in type-2 diabetic subjects: dietary modulation in the PREDIMED randomized trial. Cardiovasc. Diabetol. 15, 4 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Cornelis, M. C. et al. Joint effects of common genetic variants on the risk for type 2 diabetes in U.S. men and women of European ancestry. Ann. Intern. Med. 150, 541–550 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  133. de Rooij, S. R. et al. The effects of the Pro12Ala polymorphism of the peroxisome proliferator-activated receptor-γ2 gene on glucose/insulin metabolism interact with prenatal exposure to famine. Diabetes Care 29, 1052–1057 (2006).

    Article  CAS  PubMed  Google Scholar 

  134. Ericson, U. et al. Sex-specific interactions between the IRS1 polymorphism and intakes of carbohydrates and fat on incident type 2 diabetes. Am. J. Clin. Nutr. 97, 208–216 (2013).

    Article  CAS  PubMed  Google Scholar 

  135. Hindy, G. et al. Role of TCF7L2 risk variant and dietary fibre intake on incident type 2 diabetes. Diabetologia 55, 2646–2654 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Lamri, A. et al. Dietary fat intake and polymorphisms at the PPARG locus modulate BMI and type 2 diabetes risk in the D.E.S.I.R. prospective study. Int. J. Obes. (Lond.) 36, 218–224 (2012).

    Article  CAS  Google Scholar 

  137. Sonestedt, E. et al. Genetic variation in the glucose-dependent insulinotropic polypeptide receptor modifies the association between carbohydrate and fat intake and risk of type 2 diabetes in the Malmo Diet and Cancer cohort. J. Clin. Endocrinol. Metab. 97, E810–E818 (2012).

    Article  CAS  PubMed  Google Scholar 

  138. van Hoek, M., Langendonk, J. G., de Rooij, S. R., Sijbrands, E. J. & Roseboom, T. J. Genetic variant in the IGF2BP2 gene may interact with fetal malnutrition to affect glucose metabolism. Diabetes 58, 1440–1444 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Villegas, R., Goodloe, R. J., McClellan, B. E. Jr, Boston, J. & Crawford, D. C. Gene–carbohydrate and gene–fiber interactions and type 2 diabetes in diverse populations from the National Health and Nutrition Examination Surveys (NHANES) as part of the Epidemiologic Architecture for Genes Linked to Environment (EAGLE) study. BMC Genet. 15, 69 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Sterns, J. D., Smith, C. B., Steele, J. R., Stevenson, K. L. & Gallicano, G. I. Epigenetics and type II diabetes mellitus: underlying mechanisms of prenatal predisposition. Front. Cell Dev. Biol. 2, 15 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Bramswig, N. C. & Kaestner, K. H. Epigenetics and diabetes treatment: an unrealized promise? Trends Endocrinol. Metab. 23, 286–291 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Waterland, R. A. et al. Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet. 6, e1001252 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Ramsay, M. & Sankoh, O. African partnerships through the H3Africa Consortium bring a genomic dimension to longitudinal population studies on the continent. Int. J. Epidemiol. 45, 305–308 (2016).

    Article  PubMed  Google Scholar 

  144. Marin, C. & Brunel, S. A continent exhausted by war and famine. Le Monde diplomatique http://mondediplo.com/maps/africamdv49 (2000).

Download references

Acknowledgements

The authors acknowledge funding from the Intramural Research Programs of the National Institute of Diabetes, Digestive and Kidney Diseases, the National Institute of Minority Health and Health Disparities and the Center for Research on Genomics and Global Health (CRGGH) (grant 1ZIAHG200362). The CRGGH is supported by the National Human Genome Research Institute, the National Institute of Diabetes and Digestive and Kidney Diseases, the Center for Information Technology and the Office of the Director at the NIH.

Author information

Authors and Affiliations

Authors

Contributions

A.E.S. researched data for the article. J.N.U., S.T.C., A.R.B., M.U. and A.E.S. made substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission. J.N.U. and S.T.C. contributed equally to the article.

Corresponding author

Correspondence to Anne E. Sumner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related links

PowerPoint slides

Supplementary information

Supplementary information S1 (table)

Type 2 diabetes mellitus loci with evidence in individuals of African ancestry (PDF 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Utumatwishima, J., Chung, S., Bentley, A. et al. Reversing the tide — diagnosis and prevention of T2DM in populations of African descent. Nat Rev Endocrinol 14, 45–56 (2018). https://doi.org/10.1038/nrendo.2017.127

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrendo.2017.127

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing