Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The glycocalyx—linking albuminuria with renal and cardiovascular disease

Key Points

  • The luminal surface of the glomerular endothelium is covered with a hydrogel called the glycocalyx, which is comprised of glycosoaminoglycans, glycoproteins and associated serum proteins

  • The glycocalyx acts as a barrier against protein filtration across the endothelium

  • Loss of glycocalyx function might underlie the association of albuminuria with progression of renal and cardiovascular disease

  • Albuminuria as a consequence of glycocalyx dysfunction is likely to be a causal factor in the progression of renal disease

  • Understanding the mechanisms of disease that result from glycocalyx dysfunction could help to develop clinical trials in which albuminuria is an end point

Abstract

Albuminuria is commonly used as a marker of kidney disease progression, but some evidence suggests that albuminuria also contributes to disease progression by inducing renal injury in specific disease conditions. Studies have confirmed that in patients with cardiovascular risk factors, such as diabetes and hypertension, endothelial damage drives progression of kidney disease and cardiovascular disease. A key mechanism that contributes to this process is the loss of the glycocalyx—a polysaccharide gel that lines the luminal endothelial surface and that normally acts as a barrier against albumin filtration. Degradation of the glycocalyx in response to endothelial activation can lead to albuminuria and subsequent renal and vascular inflammation, thus providing a pathophysiological framework for the clinical association of albuminuria with renal and cardiovascular disease progression. In this Review, we examine the likely mechanisms by which glycocalyx dysfunction contributes to kidney injury and explains the link between cardiovascular disease and albuminuria. Evidence suggests that glycocalyx dysfunction is reversible, suggesting that these mechanisms could be considered as therapeutic targets to prevent the progression of renal and cardiovascular disease. This possibility enables the use of existing drugs in new ways, provides an opportunity to develop novel therapies, and indicates that albuminuria should be reconsidered as an end point in clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The structure of the glycocalyx.
Figure 2: Mechanism of glycocalyx degradation.
Figure 3: Loss of the glycocalyx leads to podocyte and kidney injury.
Figure 4: Development of atherosclerotic lesions after loss of the glycocalyx.

Similar content being viewed by others

References

  1. Heerspink, H. J., Holtkamp, F. A., de Zeeuw, D. & Ravid, M. Monitoring kidney function and albuminuria in patients with diabetes. Diabetes Care 34 (Suppl. 2), S325–S329 (2011).

    PubMed  Google Scholar 

  2. Patrakka, J. & Tryggvason, K. New insights into the role of podocytes in proteinuria. Nat. Rev. Nephrol. 5, 463–468 (2009).

    CAS  PubMed  Google Scholar 

  3. Comper, W. D. The limited role of the glomerular endothelial cell glycocalyx as a barrier to transglomerular albumin transport. Connect. Tissue Res. 55, 2–7 (2014).

    CAS  PubMed  Google Scholar 

  4. Mancia, G. et al. Reappraisal of European guidelines on hypertension management: a European Society of Hypertension Task Force document. Blood Press. 18, 308–347 (2009).

    CAS  PubMed  Google Scholar 

  5. Parving, H. H., Persson, F. & Rossing, P. Microalbuminuria: a parameter that has changed diabetes care. Diabetes Res. Clin. Pract. 107, 1–8 (2015).

    CAS  PubMed  Google Scholar 

  6. Dane, M. J. et al. Glomerular endothelial surface layer acts as a barrier against albumin filtration. Am. J. Pathol. 182, 1532–1540 (2013).

    CAS  PubMed  Google Scholar 

  7. Satchell, S. C. The glomerular endothelium emerges as a key player in diabetic nephropathy. Kidney Int. 82, 949–951 (2012).

    PubMed  Google Scholar 

  8. van den Berg, B. M., Spaan, J. A. & Vink, H. Impaired glycocalyx barrier properties contribute to enhanced intimal low-density lipoprotein accumulation at the carotid artery bifurcation in mice. Pflugers Arch. 457, 1199–1206 (2009).

    PubMed  Google Scholar 

  9. Harvey, S. J. et al. Role of distinct type IV collagen networks in glomerular development and function. Kidney Int. 54, 1857–1866 (1998).

    CAS  PubMed  Google Scholar 

  10. Satchell, S. The role of the glomerular endothelium in albumin handling. Nat. Rev. Nephrol. 12, 717–725 (2013).

    Google Scholar 

  11. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    CAS  PubMed  Google Scholar 

  12. Wang, L., Fuster, M., Sriramarao, P. & Esko, J. D. Endothelial heparan sulfate deficiency impairs L-selectin- and chemokine-mediated neutrophil trafficking during inflammatory responses. Nat. Immunol. 6, 902–910 (2005).

    CAS  PubMed  Google Scholar 

  13. Garsen, M., Rops, A. L., Rabelink, T. J., Berden, J. H. & van der Vlag, J. The role of heparanase and the endothelial glycocalyx in the development of proteinuria. Nephrol. Dial. Transplant. 29, 49–55 (2014).

    CAS  PubMed  Google Scholar 

  14. Kiessling, L. L. & Grim, J. C. Glycopolymer probes of signal transduction. Chem. Soc. Rev. 42, 4476–4491 (2013).

    CAS  PubMed  Google Scholar 

  15. Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    CAS  PubMed  Google Scholar 

  16. Hoogewerf, A J. et al. Glycosaminoglycans mediate cell surface oligomerization of chemokines. Biochemistry 36, 13570–13578 (1997).

    CAS  PubMed  Google Scholar 

  17. Lortat-Jacob, H. The molecular basis and functional implications of chemokine interactions with heparan sulphate. Curr. Opin. Struct. Biol. 19, 543–548 (2009).

    CAS  PubMed  Google Scholar 

  18. Kosto, K. B. & Deen, W. M. Hindered convection of macromolecules in hydrogels. Biophys. J. 88, 277–286 (2005).

    CAS  PubMed  Google Scholar 

  19. Adamson, R. H. et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J. Physiol. 557, 889–907 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Ryan, G. B. & Karnovsky, M. J. Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. Kidney Int. 9, 36–45 (1976).

    CAS  PubMed  Google Scholar 

  21. Jeansson, M. & Haraldsson, B. Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. Am. J. Physiol. Renal Physiol. 290, F111–F116 (2006).

    CAS  PubMed  Google Scholar 

  22. Ruggiero, A. et al. Paradoxical glomerular filtration of carbon nanotubes. Proc. Natl Acad. Sci. USA 107, 12369–12374 (2010).

    CAS  PubMed  Google Scholar 

  23. Fridén, V. et al. The glomerular endothelial cell coat is essential for glomerular filtration. Kidney Int. 79, 1322–1330 (2011).

    PubMed  Google Scholar 

  24. Chang, R. L. et al. Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. Biophys. J. 15, 887–906 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Guimarães, M. A., Nikolovski, J., Pratt, L. M., Greive, K. & Comper, W. D. Anomalous fractional clearance of negatively charged Ficoll relative to uncharged Ficoll. Am. J. Physiol. Renal Physiol. 285, F1118–F1124 (2003).

    PubMed  Google Scholar 

  26. Rabelink, T. J., de Boer, H. C. & van Zonneveld, A. J. Endothelial activation and circulating markers of endothelial activation in kidney disease. Nat. Rev. Nephrol. 6, 404–414 (2010).

    CAS  PubMed  Google Scholar 

  27. Gil, N. et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61, 208–216 (2012).

    CAS  PubMed  Google Scholar 

  28. Axelsson, J. et al. Inactivation of heparan sulfate 2-O-sulfotransferase accentuates neutrophil infiltration during acute inflammation in mice. Blood 120, 1742–1751 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Rops, A. L. et al. Modulation of heparan sulfate in the glomerular endothelial glycocalyx decreases leukocyte influx during experimental glomerulonephritis. Kidney Int. 86, 932–942 (2014).

    CAS  PubMed  Google Scholar 

  30. Wijnhoven, T. J. et al. Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia 51, 372–382 (2008).

    CAS  PubMed  Google Scholar 

  31. Chajara, A. et al. Circulating hyaluronan and hyaluronidase are increased in diabetic rats. Diabetologia 43, 387–388 (2000).

    CAS  PubMed  Google Scholar 

  32. Ikegami-Kawai, M., Suzuki, A., Karita, I. & Takahashi, T. Increased hyaluronidase activity in the kidney of streptozotocin-induced diabetic rats. J. Biochem. 134, 875–880 (2003).

    CAS  PubMed  Google Scholar 

  33. Fiebiger, E. et al. Invariant chain controls the activity of extracellular cathepsin L. J. Exp. Med. 196, 1263–1269 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Harada, H. & Takahashi, M. CD44-dependent intracellular and extracellular catabolism of hyaluronic acid by hyaluronidase-1 and -2. J. Biol. Chem. 282, 5597–5607 (2007).

    CAS  PubMed  Google Scholar 

  35. van den Hoven, M. J. et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 70, 2100–2108 (2006).

    CAS  PubMed  Google Scholar 

  36. Parish, C. R. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6, 633–643 (2006).

    CAS  PubMed  Google Scholar 

  37. Kriz, W. & LeHir, M. Pathways to nephron loss starting from glomerular diseases—insights from animal models. Kidney Int. 67, 404–419 (2005).

    PubMed  Google Scholar 

  38. Donath, M. Y. Targeting inflammation in the treatment of type 2 diabetes: time to start. Nat. Rev. Drug Discov. 13, 465–476 (2014).

    CAS  PubMed  Google Scholar 

  39. Ninichuk, V. et al. Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am. J. Pathol. 172, 628–637 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Dane, M. J. et al. Association of kidney function with changes in the endothelial surface layer. Clin. J. Am. Soc. Nephrol. 9, 698–704 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Padberg, J. S. et al. Damage of the endothelial glycocalyx in chronic kidney disease. Atherosclerosis 234, 335–343 (2014).

    CAS  PubMed  Google Scholar 

  42. Nieuwdorp, M. et al. Endothelial glycocalyx damage coincides with microalbuminuria in type 1 diabetes. Diabetes 55, 1127–1132 (2006).

    CAS  PubMed  Google Scholar 

  43. Nieuwdorp, M. et al. Loss of endothelial glycocalyx during acute hyperglycemia coincides with endothelial dysfunction and coagulation activation in vivo. Diabetes 55, 480–486 (2006).

    CAS  PubMed  Google Scholar 

  44. Vlahu, C. A. et al. Damage of the endothelial glycocalyx in dialysis patients. J. Am. Soc. Nephrol. 23, 1900–1908 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee, D. H. et al. Deeper penetration of erythrocytes into the endothelial glycocalyx is associated with impaired microvascular perfusion. PLoS ONE 9, e96477 (2014).

    PubMed  PubMed Central  Google Scholar 

  46. Dane, M., van den Berg, B. & Rabelink, T. The endothelial glycocalyx: scratching the surface for cardiovascular disease in kidney failure. Atherosclerosis 235, 56–57 (2014).

    CAS  PubMed  Google Scholar 

  47. Zoja, C., Benigni, A. & Remuzzi, G. Cellular responses to protein overload: key event in renal disease progression. Curr. Opin. Nephrol. Hypertens. 13, 31–37 (2004).

    CAS  PubMed  Google Scholar 

  48. Morigi, M. et al. In response to protein load podocytes reorganize cytoskeleton and modulate endothelin-1 gene: implication for permselective dysfunction of chronic nephropathies. Am. J. Pathol. 166, 1309–1320 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Alaiz, M., Beppu, M., Ohishi, K. & Kikugawa, K. Modification of delipidated apoprotein B of low density lipoprotein by lipid oxidation products in relation to macrophage scavenger receptor binding. Biol. Pharm. Bull. 17, 51–57 (1994).

    CAS  PubMed  Google Scholar 

  50. Müller-Krebs, S. et al. Human RAGE antibody protects against AGE-mediated podocyte dysfunction. Nephrol. Dial. Transplant 27, 3129–3136 (2012).

    PubMed  Google Scholar 

  51. Gutwein, P. et al. CXCL16 is expressed in podocytes and acts as a scavenger receptor for oxidized low-density lipoprotein. Am. J. Pathol. 174, 2061–2072 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Remuzzi, G., Ruggenenti, P. & Benigni, A. Understanding the nature of renal disease progression. Kidney Int. 51, 2–15 (1997).

    CAS  PubMed  Google Scholar 

  53. Theilig, F. et al. Abrogation of protein uptake through megalin-deficient proximal tubules does not safeguard against tubulointerstitial injury. J. Am. Soc. Nephrol. 18, 1824–1834 (2007).

    CAS  PubMed  Google Scholar 

  54. Daehn, I. et al. Endothelial mitochondrial oxidative stress determines podocyte depletion in segmental glomerulosclerosis. J. Clin. Invest. 124, 1608–1621 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sun, Y. B. et al. Glomerular endothelial cell injury and damage precedes that of podocytes in adriamycin-induced nephropathy. PLoS ONE 8, e55027 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kanetsuna, Y. et al. Deficiency of endothelial nitric-oxide synthase confers susceptibility to diabetic nephropathy in nephropathy-resistant inbred mice. Am. J. Pathol. 170, 1473–1484 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Oltean, S. et al. Vascular endothelial growth factor-A165b is protective and restores endothelial glycocalyx in diabetic nephropathy. J. Am. Soc. Nephrol. 26, 1889–1904 (2015).

    CAS  PubMed  Google Scholar 

  58. van den Berg, B. M. et al. Genetic deletion of endothelial hyaluronan synthase 2 results in glomerular injury and albuminuria [oral abstract TH-OR119] J. Am. Soc. Nephrol. 25 (Suppl.) 29A (2014).

    Google Scholar 

  59. van den Berg, B. M., Spaan, J. A., Rolf, T. M. & Vink, H. Atherogenic region and diet diminish glycocalyx dimension and increase intima-to-media ratios at murine carotid artery bifurcation. Am. J. Physiol. Heart Circ. Physiol. 290, H915–H920 (2006).

    CAS  PubMed  Google Scholar 

  60. Vink, H., Constantinescu, A. A. & Spaan, J. A. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 101, 1500–1502 (2000).

    CAS  PubMed  Google Scholar 

  61. Constantinescu, A., Spaan, J. A., Arkenbout, E. K., Vink, H. & Vanteeffelen, J. W. Degradation of the endothelial glycocalyx is associated with chylomicron leakage in mouse cremaster muscle microcirculation. Thromb. Haemost. 105, 790–801 (2011).

    CAS  PubMed  Google Scholar 

  62. Deckert, T., Feldt-Rasmussen, B., Borch-Johnsen, K., Jensen, T. & Kofoed-Enevoldsen, A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia 32, 219–226 (1989).

    CAS  PubMed  Google Scholar 

  63. Bakker, S. J., Gansevoort, R. T., Stuveling, E. M., Gans, R. O. & de Zeeuw, D. Microalbuminuria and C-reactive protein: similar messengers of cardiovascular risk? Curr. Hypertens. Rep. 7, 379–384 (2005).

    CAS  PubMed  Google Scholar 

  64. Ryan, U. S. & Ryan, J. W. The ultrastructural basis of endothelial cell surface functions. Biorheology 21, 155–170 (1984).

    CAS  PubMed  Google Scholar 

  65. Yoneda, H., Ueta, K., Nagasaki, M. & Arakawa, K. Involvement of heparan sulfate in the renoprotective effects of imidapril, an angiotensin-converting enzyme inhibitor, in diabetic db/db mice. J. Recept. Signal Transduct. Res. 34, 21–25 (2014).

    CAS  PubMed  Google Scholar 

  66. Ruilope, L. M. Angiotensin receptor blockers: RAAS blockade and renoprotection. Curr. Med. Res. Opin. 24, 1285–1293 (2008).

    CAS  PubMed  Google Scholar 

  67. van den Hoven, M. J. et al. Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrol. Dial. Transplant. 24, 2637–2645 (2009).

    CAS  PubMed  Google Scholar 

  68. van der Pijl, J. W. et al. Danaparoid sodium lowers proteinuria in diabetic nephropathy. J. Am. Soc. Nephrol. 8, 456–462 (1997).

    CAS  PubMed  Google Scholar 

  69. Myrup, B. et al. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus. Lancet 345, 421–422 (1995).

    CAS  PubMed  Google Scholar 

  70. Tamsma J. T., van der Woude, F. J. & Lemkes, H. H. Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy. Nephrol. Dial. Transplant. 11, 182–185 (1996).

    CAS  PubMed  Google Scholar 

  71. Naggi, A. et al. Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. J. Biol. Chem. 280, 12103–12113 (2005).

    CAS  PubMed  Google Scholar 

  72. Rao, N. V. et al. Low anticoagulant heparin targets multiple sites of inflammation, suppresses heparin-induced thrombocytopenia, and inhibits interaction of RAGE with its ligands. Am. J. Physiol. Cell Physiol. 299, C97–C110 (2010).

    CAS  PubMed  Google Scholar 

  73. Poplawska, A., Szelachowska, M., Topolska, J., Wysocka-Solowie, B. & Kinalska, I. Effect of glycosaminoglycans on urinary albumin excretion in insulin-dependent diabetic patients with micro- or macroalbuminuria. Diabetes Res. Clin. Pract. 38, 109–114 (1997).

    CAS  PubMed  Google Scholar 

  74. Broekhuizen, L. N. et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53, 2646–2655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Lewis, E. J. et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am. J. Kidney Dis. 58, 729–736 (2011).

    CAS  PubMed  Google Scholar 

  76. Packham, D. K. et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 23, 123–130 (2012).

    CAS  PubMed  Google Scholar 

  77. Gambaro, G. et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J. Am. Soc. Nephrol. 13, 1615–1625 (2002).

    CAS  PubMed  Google Scholar 

  78. Bang, K. et al. Anti-proteinuric effect of sulodexide in immunoglobulin A nephropathy. Yonsei Med. J. 52, 588–594 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Schulman, G. et al. Randomized placebo-controlled EPPIC trials of AST-120 in CKD. J. Am. Soc. Nephrol. 26, 1732–1746 (2015).

    CAS  PubMed  Google Scholar 

  80. Gambaro, G. Discounting the efficacy of sulodexide in diabetic nephropathy is premature. Am. J. Kidney Dis. 60, 169–170 (2012).

    PubMed  Google Scholar 

  81. Vlodavsky, I., Ilan, N., Naggi, A. & Casu, B. Heparanase: structure, biological functions, and inhibition by heparin-derived mimetics of heparan sulfate. Curr. Pharm. Des. 13, 2057–2073 (2007).

    CAS  PubMed  Google Scholar 

  82. VanTeeffelen, J. W., Brands, J., Jansen, C., Spaan, J. A. & Vink, H. Heparin impairs glycocalyx barrier properties and attenuates shear dependent vasodilation in mice. Hypertension 50, 261–267 (2007).

    CAS  PubMed  Google Scholar 

  83. Weinbaum, S., Zhang, X., Han, Y., Vink, H. & Cowin, S. C. Mechanotransduction and flow across the endothelial glycocalyx. Proc. Natl Acad. Sci. USA 100, 7988–7995 (2003).

    CAS  PubMed  Google Scholar 

  84. Maguire, J. J. & Davenport, A. P. Endothelin receptors and their antagonists. Semin. Nephrol. 35, 125–136 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Verhaar, M. C. et al. Endothelin-A receptor antagonist-mediated vasodilatation is attenuated by inhibition of nitric oxide synthesis and by endothelin-B receptor blockade. Circulation 97, 752–756 (1998).

    CAS  PubMed  Google Scholar 

  86. Boels, M. G. et al. Reduction in albuminuria in diabetic nephropathy by atrasentan is associated with restoration of the glomerular endothelial glycocalyx [oral abstract SA-OR037]. J. Am. Soc. Nephrol. 25 (Suppl.), 89A (2014).

    Google Scholar 

  87. de Zeeuw, D. et al. The endothelin antagonist atrasentan lowers residual albuminuria in patients with type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 25, 1083–1093 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. U.K. Prospective Diabetes Study Group. Quality of life in type 2 diabetic patients is affected by complications but not by intensive policies to improve blood glucose or blood pressure control (UKPDS 37). Diabetes Care 22, 1125–1136 (1999).

  89. Palmer, S. C. et al. Comparative efficacy and safety of blood pressure-lowering agents in adults with diabetes and kidney disease: a network meta-analysis. Lancet 385, 2047–2056 (2015).

    CAS  PubMed  Google Scholar 

  90. Imai, E. et al. Reduction and residual proteinuria are therapeutic targets in type 2 diabetes with overt nephropathy: a post hoc analysis (ORIENT-proteinuria). Nephrol. Dial. Transplant. 28, 2526–2534 (2013).

    CAS  PubMed  Google Scholar 

  91. Baigent, C. et al. The effects of lowering LDL cholesterol with simvastatin plus ezetimibe in patients with chronic kidney disease (Study of Heart and Renal Protection): a randomised placebo-controlled trial. Lancet 377, 2181–2192 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Pfeffer, M. A. et al. A trial of darbepoetin alfa in type 2 diabetes and chronic kidney disease. N. Engl. J. Med. 361, 2019–2032 (2009).

    PubMed  Google Scholar 

  93. Fried, L. F. et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N. Engl. J. Med. 369, 1892–1903 (2013).

    CAS  PubMed  Google Scholar 

  94. Mann, J. F. et al. Renal outcomes with telmisartan, ramipril, or both, in people at high vascular risk (the ONTARGET study): a multicentre, randomised, double-blind, controlled trial. Lancet 372, 547–553 (2008).

    CAS  PubMed  Google Scholar 

  95. Schmieder, R. E. et al. Mortality and morbidity in relation to changes in albuminuria, glucose status and systolic blood pressure: an analysis of the ONTARGET and TRANSCEND studies. Diabetologia 57, 2019–2029 (2014).

    CAS  PubMed  Google Scholar 

  96. Usui, T. H., Hoekman, J., de Zeeuw, D. & Lambers Heerspink, H. J. Stroke outcomes and renal function in diabetes: a meta-analysis of randomized controlled trials [Poster FR-PO751]. J. Am. Soc. Nephrol. 25 (Suppl.), 541A (2014).

    Google Scholar 

  97. Thompson, A. Proteinuria as a surrogate end point—more data are needed. Nat. Rev. Nephrol. 8, 306–309 (2012).

    CAS  PubMed  Google Scholar 

  98. US National Library of Medicine. ClinicalTrials.gov [online] (2015).

  99. Vreys, V. et al. Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J. Biol. Chem. 280, 33141–33148 (2005).

    CAS  PubMed  Google Scholar 

  100. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan–syntenin–ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Goodall, K. J., Poon, I. K., Phipps, S. & Hulett, M. D. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS ONE 9, e109596 (2014).

    PubMed  PubMed Central  Google Scholar 

  102. Félétou, M., Köhler, R. & Vanhoutte, P. M. Endothelium-derived vasoactive factors and hypertension: possible roles in pathogenesis and as treatment targets. Curr. Hypertens. Rep. 12, 267–275 (2010).

    PubMed  PubMed Central  Google Scholar 

  103. Stamler, J. S., Lamas, S. & Fang, F. C. Nitrosylation. The prototypic redox-based signaling mechanism. Cell 106, 675–683 (2001).

    CAS  PubMed  Google Scholar 

  104. Marshall, H. E. & Stamler, J. S. Inhibition of NF-κB by S-nitrosylation. Biochemistry 40, 1688–1693 (2001).

    CAS  PubMed  Google Scholar 

  105. Matsushita, K. et al. Nitric oxide regulates exocytosis by S-nitrosylation of N-ethylmaleimide-sensitive factor. Cell 115, 139–150 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Rabelink, T. J. & Luscher, T. F. Endothelial nitric oxide synthase: host defense enzyme of the endothelium? Arterioscler. Thromb. Vasc. Biol. 26, 267–271 (2006).

    CAS  PubMed  Google Scholar 

  107. Hansson, G. K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.J.R. was supported by the Glycoren consortium grant of the Dutch Kidney Foundation (CP09.03).

Author information

Authors and Affiliations

Authors

Contributions

T.J.R. researched data for the article. Both authors made substantial contributions to discussion of content, wrote the article, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Ton J. Rabelink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelink, T., de Zeeuw, D. The glycocalyx—linking albuminuria with renal and cardiovascular disease. Nat Rev Nephrol 11, 667–676 (2015). https://doi.org/10.1038/nrneph.2015.162

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.162

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing