Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The gut microbiome, diet, and links to cardiometabolic and chronic disorders

Key Points

  • Dietary modifications (in particular high-fat feeding) can induce changes in the microbiota that might impact on host-associated metabolic disorders, such as insulin resistance

  • Germ-free mice exhibit reduced adiposity and fat pads compared to conventionally housed mice, thus implicating the gut microbiota in energy storage

  • An obese phenotype is transmissible via faecal transfer from obese mice or humans to germ-free mice

  • Metabolites that are derived from the gut microbiota, such as trimethylamine N-oxide (TMAO), are associated with poor cardiovascular outcomes in patients with cardiovascular disease

  • TMAO is increased in patients with chronic kidney disease (CKD) before haemodialysis and decreases after kidney transplantation

  • TMAO is associated with poor cardiovascular outcomes in patients with CKD

Abstract

Cardiometabolic diseases (CMDs) have been associated with changes in the composition of the gut microbiota, with links between the host environment and microbiota identified in preclinical models. High-throughput sequencing technology has facilitated in-depth studies of the gut microbiota, bacterial-derived metabolites, and their association with CMDs. Such strategies have shown that patients with CMDs frequently exhibit enrichment or depletion of certain bacterial groups in their resident microbiota compared to healthy individuals. Furthermore, the ability to transfer resident gut microbiota from mice or humans into germ-free mouse models, or between human patients, has enabled researchers to characterize the causative role of the gut microbiota in CMDs. These approaches have helped identify that dietary intake of choline, which is metabolized by the gut microbiota, is associated with cardiovascular outcomes in mice and humans. Trimethylamine N-oxide (TMAO) — a metabolite derived from the gut microbiota — is also associated with poor cardiovascular outcomes in patients with cardiovascular disease and is elevated in patients with chronic kidney disease (CKD). TMAO might represent a biomarker that links the environment and microbiota with CKD. This Review summarizes data suggesting a link between the gut microbiota and derived metabolites with food intake patterns, metabolic alterations, and chronic CMDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Insights into the role of the gut microbiota from germ-free mice and faecal transfer experiments.
Figure 2: Links between dietary intake, gut microbiota, host biology and tissue damage.

Similar content being viewed by others

References

  1. Ogden, C. L., Carroll, M. D. & Flegal, K. M. Prevalence of obesity in the United States. JAMA 312, 189–190 (2014).

    Article  CAS  PubMed  Google Scholar 

  2. Kopelman, P. G. Obesity as a medical problem. Nature 404, 635–643 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Arena, R. et al. Healthy lifestyle interventions to combat noncommunicable disease — a novel nonhierarchical connectivity model for key stakeholders: a policy statement from the American Heart Association, European Society of Cardiology, European Association for Cardiovascular Prevention and Rehabilitation, and American College of Preventive Medicine. Eur. Heart J. 36, 2097–2109 (2015).

    Article  PubMed  Google Scholar 

  4. Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Clemente, J. C., Ursell, L. K., Parfrey, L. W. & Knight, R. The impact of the gut microbiota on human health: an integrative view. Cell 148, 1258–1270 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aron-Wisnewsky, J., Doré, J. & Clement, K. The importance of the gut microbiota after bariatric surgery. Nat. Rev. Gastroenterol. Hepatol. 9, 590–598 (2012).

    Article  PubMed  Google Scholar 

  7. Fouhy, F., Ross, R. P., Fitzgerald, G. F., Stanton, C. & Cotter, P. D. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3, 203–220 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shendure, J. & Ji, H. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Li, J. et al. An integrated catalog of reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834–841 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Parkhill, J. What has high-throughput sequencing ever done for us? Nat. Rev. Microbiol. 11, 664–665 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Thomas, L. V. & Ockhuizen, T. New insights into the impact of the intestinal microbiota on health and disease: a symposium report. Br. J. Nutr. 107, S1–S13 (2012).

    Article  CAS  PubMed  Google Scholar 

  12. Ji, B. & Nielsen, J. From next-generation sequencing to systematic modeling of the gut microbiome. Front. Genet. 6, 219 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Santiago, A. et al. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol. 14, 112 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cardona, S. et al. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bromberg, J. S., Fricke, W. F., Brinkman, C. C., Simon, T. & Mongodin, E. F. Microbiota — implications for immunity and transplantation. Nat. Rev. Nephrol. 11, 342–353 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    Article  PubMed  Google Scholar 

  18. Turnbaugh, P. J., Bäckhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ridaura, V. K. et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341, 1241214 (2013).

    Article  CAS  PubMed  Google Scholar 

  20. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut http://dx.doi.org/10.1136/gutjnl-2014-307913 (2014).

  21. Psichas, A. et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int. J. Obes. 39, 424–429 (2015).

    Article  CAS  Google Scholar 

  22. Sonnenburg, J. L. et al. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307, 1955–1959 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Gill, S. R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Topping, D. L. & Clifton, P. M. Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides. Physiol. Rev. 81, 1031–1064 (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Aguirre, M., Jonkers, D. M., Troost, F. J. & Roeselers, G., Venema K. In vitro characterization of the impact of different substrates on metabolite production, energy extraction and composition of gut microbiota from lean and obese subjects. PLoS ONE 9, e113864 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Murphy, E. F. et al. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut 59, 1635–1642 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Everard, A. et al. Intestinal epithelial MyD88 is a sensor switching host metabolism towards obesity according to nutritional status. Nat. Commun. 5, 5648 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Tlaskalová-Hogenová, H. et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell. Mol. Immunol. 8, 110–120 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Steinmeyer, S., Lee, K., Jayaraman, A. & Alaniz, R. C. Microbiota metabolite regulation of host immune homeostasis: a mechanistic missing link. Curr. Allergy Asthma Rep. 15, 24 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Reikvam, D. H. et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6, e17996 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nguyen, T. L., Vieira-Silva, S., Liston, A. & Raes, J. How informative is the mouse for human gut microbiota research? Dis. Model Mech. 8, 1–16 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. De Filippo, C. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA 107, 14691–14696 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yatsunenko, T. et al. Human gut microbiome viewed across age and geography. Nature 486, 222–227 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cotillard, A. et al. Dietary intervention impact on gut microbial gene richness. Nature 500, 585–588 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Kong, L. C. et al. Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects. PLoS ONE 9, e109434 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Claesson, M. J. et al. Gut microbiota composition correlates with diet and health in the elderly. Nature 488, 178–184 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Arumugam, M. et al. Enterotypes of the human gut microbiome. Nature 473, 174–180 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Qin, J. et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490, 55–60 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Karlsson, F. H. et al. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat. Commun. 3, 1245 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Wu, G. D. et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 334, 105–108 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wang, J. et al. Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc. Natl Acad. Sci. USA 111, E2703–E2710 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Knights, D. et al. Rethinking 'enterotypes'. Cell Host Microbe 16, 433–437 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeffery, I. B., Claesson, M. J., O'Toole, P. W. & Shanahan, F. Categorization of the gut microbiota: enterotypes or gradients? Nat. Rev. Microbiol. 10, 591–592 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Koren, O. et al. A guide to enterotypes across the human body: meta-analysis of microbial community structures in human microbiome datasets. PLoS Comput. Biol. 9, e1002863 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huse, S. M., Ye, Y., Zhou, Y. & Fodor, A. A. A core human microbiome as viewed through 16S rRNA sequence clusters. PLoS ONE 7, e34242 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Xu, Z. & Knight, R. Dietary effects on human gut microbiome diversity. Br. J. Nutr. 113, S1–S5 (2015).

    Article  CAS  PubMed  Google Scholar 

  47. Voreades, N., Kozil, A. & Weir, T. L. Diet and the development of the human intestinal microbiome. Front. Microbiol. 5, 494 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ravussin, Y. et al. Responses of gut microbiota to diet composition and weight loss in lean and obese mice. Obesity (Silver Spring) 20, 738–747 (2012).

    Article  CAS  Google Scholar 

  49. David, L. A. et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 505, 559–563 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Walker, A. W. et al. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME J. 5, 220–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  51. Duncan, S. H. et al. Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl. Environ. Microbiol. 73, 1073–1078 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008).

    Article  CAS  Google Scholar 

  53. Shoaie, S. et al. Quantifying diet-induced metabolic changes of the human gut microbiome. Cell Metab. 22, 320–331 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    Article  CAS  PubMed  Google Scholar 

  55. Fernández-Real, J. M. et al. CD14 modulates inflammation-driven insulin resistance. Diabetes 60, 2179–2186 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

    Article  CAS  PubMed  Google Scholar 

  57. Carvalho, B. M. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 2823–2834 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Gummesson, A. et al. Intestinal permeability is associated with visceral adiposity in healthy women. Obesity (Silver Spring) 19, 2280–2282 (2011).

    Article  Google Scholar 

  59. Bischoff, S. C. et al. Intestinal permeability — a new target for disease prevention and therapy. BMC Gastroenterol. 14, 189 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Amar, J. et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO Mol. Med. 3, 559–572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

    Article  CAS  PubMed  Google Scholar 

  62. Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Everard, A. et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc. Natl Acad. Sci. USA 110, 9066–9071 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

    Article  CAS  PubMed  Google Scholar 

  65. Shin N.-R. et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 63, 727–735 (2014).

    Article  CAS  PubMed  Google Scholar 

  66. Khan, M. T., Nieuwdorp, M. & Bäckhed, F. Microbial modulation of insulin sensitivity. Cell Metab. 20, 753–760 (2014).

    Article  CAS  PubMed  Google Scholar 

  67. Tilg, H. & Moschen, A. R. Microbiota and diabetes: an evolving relationship. Gut 63, 1513–1521 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Tremaroli, V. & Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature 489, 242–249 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Tilg, H. & Kaser, A. Gut microbiome, obesity, and metabolic dysfunction. J. Clin. Invest. 121, 2126–2132 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Le Chatelier, E. et al. Richness of human gut microbiome correlates with metabolic markers. Nature 500, 541–546 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology. Gut http://dx.doi.org/10.1136/gutjnl-2014-308778 (2015).

  72. Zhang, H. et al. Human gut microbiota in obesity and after gastric bypass. Proc. Natl Acad. Sci. USA 106, 2365–2370 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Liou, A. P. et al. Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity. Sci. Transl. Med. 5, 178ra41 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Aron-Wisnewsky, J. & Clement, K. The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity. Curr. Atheroscler. Rep. 16, 454 (2014).

    Article  CAS  PubMed  Google Scholar 

  75. Chambers, E. S. et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut http://dx.doi.org/10.1136/gutjnl-2014-307913 (2014).

  76. Karaki S.-I. et al. Expression of the short-chain fatty acid receptor, GPR43, in the human colon. J. Mol. Histol. 39, 135–142 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Quévrain, E. et al. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn's disease. Gut http://dx.doi.org/10.1136/gutjnl-2014-307649 (2015).

  80. Karlsson, F. H. et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498, 99–103 (2013).

    Article  CAS  PubMed  Google Scholar 

  81. Zhang, X. et al. Human gut microbiota changes reveal the progression of glucose intolerance. PLoS ONE 8, e71108 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Furet, J.-P. et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes 59, 3049–3057 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sjöström, L. et al. Bariatric surgery and long-term cardiovascular events. JAMA 307, 56–65 (2012).

    Article  PubMed  Google Scholar 

  84. Sjöström, L. et al. Association of bariatric surgery with long-term remission of type 2 diabetes and with microvascular and macrovascular complications. JAMA 311, 2297–2304 (2014).

    Article  CAS  PubMed  Google Scholar 

  85. Buse, J. B. et al. How do we define cure of diabetes? Diabetes Care 32, 2133–2135 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tirosh, A. et al. Renal function following three distinct weight loss dietary strategies during 2 years of a randomized controlled trial. Diabetes Care 36, 2225–2232 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chassaing, B., Ley, R. E. & Gewirtz, A. T. Intestinal epithelial cell toll-like receptor 5 regulates the intestinal microbiota to prevent low-grade inflammation and metabolic syndrome in mice. Gastroenterology 147, 1363–1377.e17 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Kim, M. -S., Hwang, S. -S., Park, E. -J. & Bae, J.-W. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ. Microbiol. Rep. 5, 765–775 (2013).

    Article  CAS  PubMed  Google Scholar 

  89. Amar, J. et al. Involvement of tissue bacteria in the onset of diabetes in humans: evidence for a concept. Diabetologia 54, 3055–3061 (2011).

    Article  CAS  PubMed  Google Scholar 

  90. Surawicz, C. M. et al. Guidelines for diagnosis, treatment, and prevention of Clostridium difficile infections. Am. J. Gastroenterol. 108, 478–498 (2013).

    Article  CAS  PubMed  Google Scholar 

  91. Youngster, I. et al. Oral, capsulized, frozen fecal microbiota transplantation for relapsing Clostridium difficile infection. JAMA 312, 1772–1778 (2014).

    Article  CAS  PubMed  Google Scholar 

  92. van Nood, E. et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

    Article  CAS  PubMed  Google Scholar 

  93. Vrieze, A. et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology 143, 913–916.e7 (2012).

    Article  CAS  PubMed  Google Scholar 

  94. Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Koren, O. et al. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc. Natl Acad. Sci. USA 108, S4592–S4598 (2011).

    Article  Google Scholar 

  96. Spinler, S. A. et al. Frequency of attainment of low-density lipoprotein cholesterol and non-high-density lipoprotein cholesterol goals in cardiovascular clinical practice (from the National Cardiovascular Data Registry PINNACLE Registry). Am. J. Cardiol. 116, 547–553 (2015).

    Article  PubMed  Google Scholar 

  97. Tang, W. H. & Hazen, S. L. The contributory role of gut microbiota in cardiovascular disease. J. Clin. Invest. 124, 4204–4211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mendelsohn, A. R. & Larrick, J. W. Dietary modification of the microbiome affects risk for cardiovascular disease. Rejuvenation Res. 16, 241–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lang, D. H. et al. Isoform specificity of trimethylamine N-oxygenation by human flavin-containing monooxygenase (FMO) and P450 enzymes: selective catalysis by FMO3. Biochem. Pharmacol. 56, 1005–1012 (1998).

    Article  CAS  PubMed  Google Scholar 

  101. Stock J. Gut microbiota: an environmental risk factor for cardiovascular disease. Atherosclerosis 229, 440–442 (2013).

    Article  CAS  PubMed  Google Scholar 

  102. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Trøseid, M. et al. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J. Intern. Med. 277, 717–726 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Tang, W. H. et al. Intestinal microbiota-dependent phosphatidylcholine metabolites, diastolic dysfunction, and adverse clinical outcomes in chronic systolic heart failure. J. Card. Fail. 21, 91–96 (2015).

    Article  CAS  PubMed  Google Scholar 

  105. Tang, W. H. et al. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J. Am. Coll. Cardiol. 64, 1908–1914 (2014).

    Article  CAS  PubMed  Google Scholar 

  106. Tang, W. H. et al. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N. Engl. J. Med. 368, 1575–1584 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Wang, Z. et al. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 35, 904–910 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gregory, J. C. et al. Transmission of atherosclerosis susceptibility with gut microbial transplantation. J. Biol. Chem. 290, 5647–5660 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Daviglus, M. L. et al. Fish consumption and the 30-year risk of fatal myocardial infarction. N. Engl. J. Med. 336, 1046–1053 (1997).

    Article  CAS  PubMed  Google Scholar 

  110. Mozaffarian, D. & Wu, J. H. Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 58, 2047–2067 (2011).

    Article  CAS  PubMed  Google Scholar 

  111. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 19, 576–585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Du, Y., Wang, L. & Hong, B. High-density lipoprotein-based drug discovery for treatment of atherosclerosis. Expert Opin. Drug Discov. 28, 1–15 (2015).

    CAS  Google Scholar 

  113. Aron-Wisnewsky, J. et al. Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J. Clin. Endocrinol. Metab. 96, 1151–1159 (2011).

    Article  CAS  PubMed  Google Scholar 

  114. Ussher, J. R., Lopaschuk, G. D. & Arduini, A. Gut microbiota metabolism of L-carnitine and cardiovascular risk. Atherosclerosis 231, 456–461 (2013).

    Article  CAS  PubMed  Google Scholar 

  115. Ringseis, R., Keller, J. & Eder, K. Role of carnitine in the regulation of glucose homeostasis and insulin sensitivity: evidence from in vivo and in vitro studies with carnitine supplementation and carnitine deficiency. Eur. J. Nutr. 51, 1–18 (2012).

    Article  CAS  PubMed  Google Scholar 

  116. Muoio, D. M. et al. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab. 15, 764–777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Broderick, T. L., Quinney, H. A., Barker, C. C. & Lopaschuk, G. D. Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87, 972–981 (1993).

    Article  CAS  PubMed  Google Scholar 

  118. DiNicolantonio, J. J., Lavie, C. J., Fares, H., Menezes, A. R. & O'Keefe, J. H. L-carnitine in the secondary prevention of cardiovascular disease: systematic review and meta-analysis. Mayo Clin. Proc. 88, 544–551 (2013).

    Article  CAS  PubMed  Google Scholar 

  119. Shang, R., Sun, Z. & Li, H. Effective dosing of L-carnitine in the secondary prevention of cardiovascular disease: a systematic review and meta-analysis. BMC Cardiovasc. Disord. 14, 88 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Lo, J. et al. Increased prevalence of subclinical coronary atherosclerosis detected by coronary computed tomography angiography in HIV-infected men. AIDS Lond. Engl. 24, 243–253 (2010).

    Article  Google Scholar 

  121. Srinivasa, S. et al. Plaque burden in HIV-infected patients is associated with serum intestinal microbiota-generated trimethylamine. AIDS Lond. Engl. 29, 443–452 (2015).

    Article  CAS  Google Scholar 

  122. Stevens, P. E. & Levin, A. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes clinical practice guideline. Ann. Intern. Med. 158, 825–830 (2012).

    Article  Google Scholar 

  123. Akbari, A. et al. Canadian Society of Nephrology commentary on the KDIGO clinical practice guideline for CKD evaluation and management. Am. J. Kidney Dis. 65, 177–205 (2015).

    Article  CAS  PubMed  Google Scholar 

  124. Vaziri, N. D. et al. Chronic kidney disease alters intestinal microbial flora. Kidney Int. 83, 308–315 (2013).

    Article  PubMed  Google Scholar 

  125. Wong, J. et al. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am. J. Nephrol. 39, 230–237 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Barros, A. F. et al. Is there interaction between gut microbial profile and cardiovascular risk in chronic kidney disease patients? Future Microbiol. 10, 517–526 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Stenvinkel, P., Lindholm, B., Heimbürger, M. & Heimbürger, O. Elevated serum levels of soluble adhesion molecules predict death in pre-dialysis patients: association with malnutrition, inflammation, and cardiovascular disease. Nephrol. Dial. Transplant. 15, 1624–1630 (2000).

    Article  CAS  PubMed  Google Scholar 

  128. Tripepi, G., Mallamaci, F. & Zoccali, C. Inflammation markers, adhesion molecules, and all-cause and cardiovascular mortality in patients with ESRD: searching for the best risk marker by multivariate modeling. J. Am. Soc. Nephrol. 16, S83–S88 (2005).

    Article  CAS  PubMed  Google Scholar 

  129. Wang, F. et al. Gut bacterial translocation is associated with microinflammation in end-stage renal disease patients. Nephrol. (Carlton) 17, 733–738 (2012).

    Article  CAS  Google Scholar 

  130. Shi, K. et al. Gut bacterial translocation may aggravate microinflammation in hemodialysis patients. Dig. Dis. Sci. 59, 2109–2117 (2014).

    Article  CAS  PubMed  Google Scholar 

  131. Vaziri, N. D. Gut microbial translocation in the pathogenesis of systemic inflammation in patients with end-stage renal disease. Dig. Dis. Sci. 59, 2020–2022 (2014).

    Article  PubMed  Google Scholar 

  132. Savassi-Rocha, A. L. et al. Changes in intestinal permeability after Roux-en-Y gastric bypass. Obes. Surg. 24, 184–190 (2014).

    Article  PubMed  Google Scholar 

  133. Magnusson, M., Magnusson, K. E., Sundqvist, T. & Denneberg, T. Impaired intestinal barrier function measured by differently sized polyethylene glycols in patients with chronic renal failure. Gut 32, 754–759 (1991).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Magnusson, M., Magnusson, K. E., Sundqvist, T. & Denneberg, T. Increased intestinal permeability to differently sized polyethylene glycols in uremic rats: effects of low- and high-protein diets. Nephron 56, 306–311 (1990).

    Article  CAS  PubMed  Google Scholar 

  135. Fogelman, A. M. TMAO is both a biomarker and a renal toxin. Circ. Res. 116, 396–397 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Bain, M. A., Faull, R., Fornasini, G., Milne, R. W. & Evans, A. M. Accumulation of trimethylamine and trimethylamine-N-oxide in end-stage renal disease patients undergoing haemodialysis. Nephrol. Dial. Transplant. 21, 1300–1304 (2006).

    Article  CAS  PubMed  Google Scholar 

  137. Kaysen, G. A. et al. Associations of trimethylamine N-oxide with nutritional and inflammatory biomarkers and cardiovascular outcomes in patients new to dialysis. J. Ren. Nutr. 25, 351–356 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Stubbs, J. R. et al. Serum trimethylamine-N-oxide is elevated in CKD and correlates with coronary atherosclerosis burden. J. Am. Soc. Nephrol. http://dx.doi.org/10.1681/ASN.2014111063 (2015).

  139. Bain, M. A., Faull, R., Milne, R. W. & Evans, A. M. Oral L -carnitine: metabolite formation and hemodialysis. Curr. Drug Metab. 7, 811–816 (2006).

    Article  CAS  PubMed  Google Scholar 

  140. Tang, W. H. et al. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 116, 448–455 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Onopiuk, A., Tokarzewicz, A. & Gorodkiewicz, E. Cystatin C: a kidney function biomarker. Adv. Clin. Chem. 68, 57–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  142. Levey, A. S., Fan, L., Eckfeldt, J. H. & Inker, L. A. Cystatin C for glomerular filtration rate estimation: coming of age. Clin. Chem. 60, 916–919 (2014).

    Article  CAS  PubMed  Google Scholar 

  143. Scarpellini, E. et al. The human gut microbiota and virome: potential therapeutic implications. Dig. Liver Dis. http://dx.doi.org/10.1016/j.dld.2015.07.008 (2015).

  144. Focà, A. et al. Gut inflammation and immunity: what isthe role of the human gut virome? Med. Inflamm. 2015, 326032 (2015).

    Article  CAS  Google Scholar 

  145. Minot, S. et al. The human gut virome: inter-individual variation and dynamic response to diet. Genome Res. 21, 1616–1625 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Hopkins, M. J., Sharp. R. & Macfarlane, G. T. Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut 48, 198–205 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Hopkins, M. J. & Macfarlane, G. T. Changes in predominant bacterial populations in human faeces with age and with Clostridium difficile infection. J. Med. Microbiol. 51, 448–454 (2002).

    Article  CAS  PubMed  Google Scholar 

  148. Antonopoulos, D. A. et al. Reproducible community dynamics of the gastrointestinal microbiota following antibiotic perturbation. Infect. Immun. 77, 2367–2375 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Macfarlane, S. Antibiotic treatments and microbes in the gut. Environ. Microbiol. 16, 919–924 (2014).

    Article  CAS  PubMed  Google Scholar 

  150. Ward, E. K. et al. The effect of PPI use on human gut microbiota and weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass. Obes. Surg. 24, 1567–1571 (2014).

    Article  PubMed  Google Scholar 

  151. Tsuda, A. et al. Influence of proton-pump inhibitors on the luminal microbiota in the gastrointestinal tract. Clin. Transl. Gastroenterol. 6, e89 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Allais, L. et al. Chronic cigarette smoke exposure induces microbial and inflammatory shifts and mucin changes in the murine gut. Environ. Microbiol. http://dx.doi.org/10.1111/1462-2920.12934 (2015).

  153. Osto, M. et al. Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine. Physiol. Behav. 119, 92–96 (2013).

    Article  CAS  PubMed  Google Scholar 

  154. Tremaroli, V. et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 22, 228–238 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Thomas, V., Clark, J. & Doré, J. Fecal microbiota analysis: an overview of sample collection methods and sequencing strategies. Future Microbiol. 10, 1485–1504 (2015).

    Article  CAS  PubMed  Google Scholar 

  156. Kennedy, N. A. et al. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS ONE 9, e88982 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the FP7 MetaCardis project (grant number HEALTH.F4_2012_305,312), the Coeur et Artère association (Fondacoeur), the AP–HP Microbaria project, and the National Agency of Research, which support their research into the gut microbiota and cardiometabolic health. The authors would also like to thank Brandon Kayser (Institute of Cardiometabolism and Nutrition, Pitié-Salpêtrière Hospital, Paris) for language editing the manuscript before submission.

Author information

Authors and Affiliations

Authors

Contributions

J.A.-W. wrote the article. J.A.-W. and K.C. researched the data for the article, provided substantial contribution to discussions of the content, and contributed equally to review and/or editing of the manuscript before submission.

Corresponding authors

Correspondence to Judith Aron-Wisnewsky or Karine Clément.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aron-Wisnewsky, J., Clément, K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat Rev Nephrol 12, 169–181 (2016). https://doi.org/10.1038/nrneph.2015.191

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2015.191

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing