Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease

Key Points

  • Heparanase is the only known mammalian endoglycosidase capable of degrading heparan sulfate (HS); it is involved in intracellular processes such as gene transcription and autophagy, but can be released into the extracellular matrix where it degrades HS

  • Immunocytes and podocytes can secrete proheparanase as well as the lysosomal cysteine protease cathepsin L, which cleaves proheparanase, to produce active heparanase

  • Activated extracellular heparanase alters the glycocalyx surfaces of glomerular endothelium and infiltrating immunocytes, and alters interactions between podocytes and the glomerular basement membrane, thereby facilitating the development of albuminuria and further glomerular inflammation

  • Increased renal heparanase activity is also involved in epithelial–mesenchymal transition and fibrosis during acute kidney injury, as well as loss of renal microvascular stability

  • Heparanase deficiency in animals, and pharmacological inhibition of heparanase, protects against the development of glomerular injury and diabetic nephropathy

  • Urinary excretion of heparanase might identify patients at risk of progressive kidney disease; elucidation of the crystal structure of heparanase has facilitated the development of new therapies to interfere with heparanase activity

Abstract

Heparanase has regulatory roles in various processes, including cell communication, gene transcription and autophagy. In addition, it is the only known mammalian endoglycosidase that is capable of degrading heparan sulfate (HS). HS chains are important constituents and organizers of the extracellular matrix (ECM), and have a key role in maintaining the integrity and function of the glomerular filtration barrier. In addition, HS chains regulate the activity of numerous bioactive molecules, such as cytokines and growth factors, at the cell surface and in the ECM. Given the functional diversity of HS, its degradation by heparanase profoundly affects important pathophysiological processes, including tumour development, neovascularization and inflammation, as well as progression of kidney disease. Heparanase-mediated degradation and subsequent remodelling of HS in the ECM of the glomerulus is a key mechanism in the development of glomerular disease, as exemplified by the complete resistance of heparanase-deficient animals to diabetes and immune-mediated kidney disease. This Review summarizes the role of heparanase in the development of kidney disease, and its potential as a therapeutic target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Heparanase structure and binding of heparan sulfate to its cleavage site.
Figure 2: Cellular metabolism of heparanase.
Figure 3: Targeting immunocytes to reduce heparanase activation.
Figure 4: Podocyte–endothelial cross talk and activation of heparanase.

Similar content being viewed by others

References

  1. Dane, M. J. et al. A microscopic view on the renal endothelial glycocalyx. Am. J. Physiol. Renal Physiol. 308, F956–F966 (2015).

    Article  CAS  PubMed  Google Scholar 

  2. Sarrazin, S., Lamanna, W. C. & Esko, J. D. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3, a004952 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Bishop, J. R., Schuksz, M. & Esko, J. D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446, 1030–1037 (2007).

    Article  CAS  PubMed  Google Scholar 

  4. Esko, J. D. & Selleck, S. B. Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Taylor, K. R. & Gallo, R. L. Glycosaminoglycans and their proteoglycans: host-associated molecular patterns for initiation and modulation of inflammation. FASEB J. 20, 9–22 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Bartlett, C. S., Jeansson, M. & Quaggin, S. E. Vascular growth factors and glomerular disease. Annu. Rev. Physiol. 78, 437–461 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Raats, C. J. et al. Expression of agrin, dystroglycan, and utrophin in normal renal tissue and in experimental glomerulopathies. Am. J. Pathol. 156, 1749–1765 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Scott, R. P. & Quaggin, S. E. Review series: the cell biology of renal filtration. J. Cell Biol. 209, 199–210 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wilson, J. C., Laloo, A. E., Singh, S. & Ferro, V. 1H NMR spectroscopic studies establish that heparanase is a retaining glycosidase. Biochem. Biophys. Res. Commun. 443, 185–188 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Okada, Y. et al. Structural recognition by recombinant human heparanase that plays critical roles in tumor metastasis. Hierarchical sulfate groups with different effects and the essential target disulfated trisaccharide sequence. J. Biol. Chem. 277, 42488–42495 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Pikas, D. S., Li, J. P., Vlodavsky, I. & Lindahl, U. Substrate specificity of heparanases from human hepatoma and platelets. J. Biol. Chem. 273, 18770–18777 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Peterson, S. B. & Liu, J. Multi-faceted substrate specificity of heparanase. Matrix Biol. 32, 223–227 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Wu, L., Viola, C. M., Brzozowski, A. M. & Davies, G. J. Structural characterization of human heparanase reveals insights into substrate recognition. Nat. Struct. Mol. Biol. 22, 1016–1022 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gandhi, N. S., Freeman, C., Parish, C. R. & Mancera, R. L. Computational analyses of the catalytic and heparin-binding sites and their interactions with glycosaminoglycans in glycoside hydrolase family 79 endo-beta-D-glucuronidase (heparanase). Glycobiology 22, 35–55 (2012).

    Article  CAS  PubMed  Google Scholar 

  15. Vlodavsky, I. et al. Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat. Med. 5, 793–802 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Gingis-Velitski, S. et al. Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans. J. Biol. Chem. 279, 44084–44092 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Levy-Adam, F. et al. Heparanase 2 interacts with heparan sulfate with high affinity and inhibits heparanase activity. J. Biol. Chem. 285, 28010–28019 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shteper, P. J. et al. Role of promoter methylation in regulation of the mammalian heparanase gene. Oncogene 22, 7737–7749 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Ogishima, T. et al. Increased heparanase expression is caused by promoter hypomethylation and up-regulation of transcriptional factor early growth response-1 in human prostate cancer. Clin. Cancer Res. 11, 1028–1036 (2005).

    CAS  PubMed  Google Scholar 

  20. Ogishima, T. et al. Promoter CpG hypomethylation and transcription factor EGR1 hyperactivate heparanase expression in bladder cancer. Oncogene 24, 6765–6772 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ateeq, B., Unterberger, A., Szyf, M. & Rabbani, S. A. Pharmacological inhibition of DNA methylation induces proinvasive and prometastatic genes in vitro and in vivo. Neoplasia 10, 266–278 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baraz, L., Haupt, Y., Elkin, M., Peretz, T. & Vlodavsky, I. Tumor suppressor p53 regulates heparanase gene expression. Oncogene 25, 3939–3947 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Chen, G. et al. Inflammatory cytokines and fatty acids regulate endothelial cell heparanase expression. Biochemistry 43, 4971–4977 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Edovitsky, E. et al. Role of endothelial heparanase in delayed-type hypersensitivity. Blood 107, 3609–3616 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lerner, I. et al. Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J. Clin. Invest. 121, 1709–1721 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Mestre, A. M. et al. Early growth response gene 1 (EGR1) regulates heparanase gene transcription in tumor cells. J. Biol. Chem. 280, 35136–35147 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. de Mestre, A. M., Khachigian, L. M., Santiago, F. S., Staykova, M. A. & Hulett, M. D. Regulation of inducible heparanase gene transcription in activated T cells by early growth response 1. J. Biol. Chem. 278, 50377–50385 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Elkin, M. et al. Regulation of heparanase gene expression by estrogen in breast cancer. Cancer Res. 63, 8821–8826 (2003).

    CAS  PubMed  Google Scholar 

  29. Xu, X. et al. Estradiol induces heparanase-1 expression and heparan sulphate proteoglycan degradation in human endometrium. Hum. Reprod. 22, 927–937 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Rao, G. et al. Reactive oxygen species mediate high glucose-induced heparanase-1 production and heparan sulphate proteoglycan degradation in human and rat endothelial cells: a potential role in the pathogenesis of atherosclerosis. Diabetologia 54, 1527–1538 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. Kramer, A. et al. Induction of glomerular heparanase expression in rats with adriamycin nephropathy is regulated by reactive oxygen species and the renin-angiotensin system. J. Am. Soc. Nephrol. 17, 2513–2520 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. van den Hoven, M. J. et al. Regulation of glomerular heparanase expression by aldosterone, angiotensin II and reactive oxygen species. Nephrol. Dial. Transplant. 24, 2637–2645 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Garsen, M. et al. Endothelin-1 induces proteinuria by heparanase-mediated disruption of the glomerular glycocalyx. J. Am. Soc. Nephrol. 27, 3545–3551 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang, P. et al. Cloning and characterization of the human heparanase-1 (HPR1) gene promoter: role of GA-binding protein and Sp1 in regulating HPR1 basal promoter activity. J. Biol. Chem. 277, 8989–8998 (2002).

    Article  CAS  PubMed  Google Scholar 

  35. Lu, W. C., Liu, Y. N., Kang, B. B. & Chen, J. H. Trans-activation of heparanase promoter by ETS transcription factors. Oncogene 22, 919–923 (2003).

    Article  CAS  PubMed  Google Scholar 

  36. Rao, G. et al. Induction of heparanase-1 expression by mutant B-Raf kinase: role of GA binding protein in heparanase-1 promoter activation. Neoplasia 12, 946–956 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Garsen, M. et al. Endothelial nitric oxide synthase prevents heparanase induction and the development of proteinuria. PLoS ONE 11, e0160894 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Garsen, M. et al. Vitamin D attenuates proteinuria by inhibition of heparanase expression in the podocyte. J. Pathol. 237, 472–481 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Zetser, A. et al. Processing and activation of latent heparanase occurs in lysosomes. J. Cell Sci. 117, 2249–2258 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Levy-Adam, F. et al. Identification and characterization of heparin/heparan sulfate binding domains of the endoglycosidase heparanase. J. Biol. Chem. 280, 20457–20466 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Wood, R. J. & Hulett, M. D. Cell surface-expressed cation-independent mannose 6-phosphate receptor (CD222) binds enzymatically active heparanase independently of mannose 6-phosphate to promote extracellular matrix degradation. J. Biol. Chem. 283, 4165–4176 (2008).

    Article  CAS  PubMed  Google Scholar 

  42. Vreys, V. et al. Cellular uptake of mammalian heparanase precursor involves low density lipoprotein receptor-related proteins, mannose 6-phosphate receptors, and heparan sulfate proteoglycans. J. Biol. Chem. 280, 33141–33148 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Shteingauz, A., Ilan, N. & Vlodavsky, I. Processing of heparanase is mediated by syndecan-1 cytoplasmic domain and involves syntenin and alpha-actinin. Cell. Mol. Life Sci. 71, 4457–4470 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yanagishita, M. & Hascall, V. C. Cell surface heparan sulfate proteoglycans. J. Biol. Chem. 267, 9451–9454 (1992).

    CAS  PubMed  Google Scholar 

  45. Simeonovic, C. J. et al. Heparanase and autoimmune diabetes. Front. Immunol. 4, 471 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Massena, S. et al. A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 116, 1924–1931 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Escobar Galvis, M. L. et al. Transgenic or tumor-induced expression of heparanase upregulates sulfation of heparan sulfate. Nat. Chem. Biol. 3, 773–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Roucourt, B., Meeussen, S., Bao, J., Zimmermann, P. & David, G. Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res. 25, 412–428 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lenoir, O., Tharaux, P. L. & Huber, T. B. Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int. 90, 950–964 (2016).

    Article  CAS  PubMed  Google Scholar 

  50. Ning, L. et al. Perlecan inhibits autophagy to maintain muscle homeostasis in mouse soleus muscle. Matrix Biol. 48, 26–35 (2015).

    Article  CAS  PubMed  Google Scholar 

  51. Shteingauz, A. et al. Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res. 75, 3946–3957 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Stewart, M. D. & Sanderson, R. D. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol. 35, 56–59 (2014).

    Article  CAS  PubMed  Google Scholar 

  53. Stewart, M. D., Ramani, V. C. & Sanderson, R. D. Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J. Biol. Chem. 290, 941–949 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Smith, P. N. et al. Heparanase in primary human osteoblasts. J. Orthop. Res. 28, 1315–1322 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Wang, F. et al. Fatty acid-induced nuclear translocation of heparanase uncouples glucose metabolism in endothelial cells. Arterioscler. Thromb. Vasc. Biol. 32, 406–414 (2012).

    Article  PubMed  CAS  Google Scholar 

  56. Buczek-Thomas, J. A., Hsia, E., Rich, C. B., Foster, J. A. & Nugent, M. A. Inhibition of histone acetyltransferase by glycosaminoglycans. J. Cell. Biochem. 105, 108–120 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Purushothaman, A. et al. Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. J. Biol. Chem. 286, 30377–30383 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Nobuhisa, T. et al. Translocation of heparanase into nucleus results in cell differentiation. Cancer Sci. 98, 535–540 (2007).

    Article  CAS  PubMed  Google Scholar 

  59. Sasaki, N., Higashi, N., Taka, T., Nakajima, M. & Irimura, T. Cell surface localization of heparanase on macrophages regulates degradation of extracellular matrix heparan sulfate. J. Immunol. 172, 3830–3835 (2004).

    Article  CAS  PubMed  Google Scholar 

  60. Levidiotis, V., Freeman, C., Tikellis, C., Cooper, M. E. & Power, D. A. Heparanase is involved in the pathogenesis of proteinuria as a result of glomerulonephritis. J. Am. Soc. Nephrol. 15, 68–78 (2004).

    Article  CAS  PubMed  Google Scholar 

  61. Levidiotis, V., Kanellis, J., Ierino, F. L. & Power, D. A. Increased expression of heparanase in puromycin aminonucleoside nephrosis. Kidney Int. 60, 1287–1296 (2001).

    Article  CAS  PubMed  Google Scholar 

  62. Levidiotis, V. et al. A synthetic heparanase inhibitor reduces proteinuria in passive Heymann nephritis. J. Am. Soc. Nephrol. 15, 2882–2892 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. van den Born, J. et al. Distribution of GBM heparan sulfate proteoglycan core protein and side chains in human glomerular diseases. Kidney Int. 43, 454–463 (1993).

    Article  CAS  PubMed  Google Scholar 

  64. van den Hoven, M. J. et al. Heparanase in glomerular diseases. Kidney Int. 72, 543–548 (2007).

    Article  CAS  PubMed  Google Scholar 

  65. Parish, C. R. The role of heparan sulphate in inflammation. Nat. Rev. Immunol. 6, 633–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  66. Rops, A. L. et al. Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int. 65, 768–785 (2004).

    Article  CAS  PubMed  Google Scholar 

  67. Lever, R., Rose, M. J., McKenzie, E. A. & Page, C. P. Heparanase induces inflammatory cell recruitment in vivo by promoting adhesion to vascular endothelium. Am. J. Physiol. Cell Physiol. 306, C1184–C1190 (2014).

    Article  CAS  PubMed  Google Scholar 

  68. Gilat, D. et al. Molecular behavior adapts to context: heparanase functions as an extracellular matrix-degrading enzyme or as a T cell adhesion molecule, depending on the local pH. J. Exp. Med. 181, 1929–1934 (1995).

    Article  CAS  PubMed  Google Scholar 

  69. Garsen, M. et al. Heparanase is essential for the development of acute experimental glomerulonephritis. Am. J. Pathol. 186, 805–815 (2016).

    Article  CAS  PubMed  Google Scholar 

  70. Gil, N. et al. Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes 61, 208–216 (2012).

    Article  CAS  PubMed  Google Scholar 

  71. Smith, R. J. et al. New approaches to the treatment of dense deposit disease. J. Am. Soc. Nephrol. 18, 2447–2456 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Rops, A. L. et al. Expression of glomerular heparan sulphate domains in murine and human lupus nephritis. Nephrol. Dial. Transplant. 22, 1891–1902 (2007).

    Article  CAS  PubMed  Google Scholar 

  73. Shafat, I., Ilan, N., Zoabi, S., Vlodavsky, I. & Nakhoul, F. Heparanase levels are elevated in the urine and plasma of type 2 diabetes patients and associate with blood glucose levels. PLoS ONE 6, e17312 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Shafat, I. et al. Elevated urine heparanase levels are associated with proteinuria and decreased renal allograft function. PLoS ONE 7, e44076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ziolkowski, A. F., Popp, S. K., Freeman, C., Parish, C. R. & Simeonovic, C. J. Heparan sulfate and heparanase play key roles in mouse beta cell survival and autoimmune diabetes. J. Clin. Invest. 122, 132–141 (2012).

    Article  CAS  PubMed  Google Scholar 

  76. Bitan, M. et al. Heparanase prevents the development of type 1 diabetes in non-obese diabetic mice by regulating T-cell activation and cytokines production. Diabetes Metab. Res. Rev. 24, 413–421 (2008).

    Article  CAS  PubMed  Google Scholar 

  77. Katz, A. et al. Involvement of human heparanase in the pathogenesis of diabetic nephropathy. Isr. Med. Assoc. J. 4, 996–1002 (2002).

    CAS  PubMed  Google Scholar 

  78. Maxhimer, J. B. et al. Heparanase-1 gene expression and regulation by high glucose in renal epithelial cells: a potential role in the pathogenesis of proteinuria in diabetic patients. Diabetes 54, 2172–2178 (2005).

    Article  CAS  PubMed  Google Scholar 

  79. Shafat, I. et al. An ELISA method for the detection and quantification of human heparanase. Biochem. Biophys. Res. Commun. 341, 958–963 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. van den Hoven, M. J. et al. Increased expression of heparanase in overt diabetic nephropathy. Kidney Int. 70, 2100–2108 (2006).

    Article  CAS  PubMed  Google Scholar 

  81. Wijnhoven, T. J. et al. Heparanase induces a differential loss of heparan sulphate domains in overt diabetic nephropathy. Diabetologia 51, 372–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Abu El-Asrar, A. M. et al. Upregulated expression of heparanase in the vitreous of patients with proliferative diabetic retinopathy originates from activated endothelial cells and leukocytes. Invest. Ophthalmol. Vis. Sci. 56, 8239–8247 (2015).

    Article  PubMed  CAS  Google Scholar 

  83. Boels, M. G. et al. Atrasentan reduces albuminuria by restoring the glomerular endothelial glycocalyx barrier in diabetic nephropathy. Diabetes 65, 2429–2439 (2016).

    Article  CAS  PubMed  Google Scholar 

  84. Tashiro, K. et al. Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 16, 1–4 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Thomas-Ijpelaar, D. et al. Modification of renal macrophage signaling via MCP-1 inhibition reduces albuminuria in diabetic nephropathy in mice [abstract iTH-PO434]. J. Am. Soc. Nephrol. 27, 192A (2016).

    Google Scholar 

  86. Goldberg, R. et al. Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes 63, 4302–4313 (2014).

    Article  CAS  PubMed  Google Scholar 

  87. Yaddanapudi, S. et al. CD2AP in mouse and human podocytes controls a proteolytic program that regulates cytoskeletal structure and cellular survival. J. Clin. Invest. 121, 3965–3980 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Asanuma, K., Shirato, I., Ishidoh, K., Kominami, E. & Tomino, Y. Selective modulation of the secretion of proteinases and their inhibitors by growth factors in cultured differentiated podocytes. Kidney Int. 62, 822–831 (2002).

    Article  CAS  PubMed  Google Scholar 

  89. Garsen, M. et al. Cathepsin L is crucial for the development of early experimental diabetic nephropathy. Kidney Int. 90, 1012–1022 (2016).

    Article  CAS  PubMed  Google Scholar 

  90. Nakagawa, T., Kosugi, T., Haneda, M., Rivard, C. J. & Long, D. A. Abnormal angiogenesis in diabetic nephropathy. Diabetes 58, 1471–1478 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vlodavsky, I. & Friedmann, Y. Molecular properties and involvement of heparanase in cancer metastasis and angiogenesis. J. Clin. Invest. 108, 341–347 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Meirovitz, A. et al. Heparanase in inflammation and inflammation-associated cancer. FEBS J. 280, 2307–2319 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Zetser, A. et al. Heparanase induces vascular endothelial growth factor expression: correlation with p38 phosphorylation levels and Src activation. Cancer Res. 66, 1455–1463 (2006).

    Article  CAS  PubMed  Google Scholar 

  94. Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Rops, A. L. et al. Urinary heparanase activity in patients with Type 1 and Type 2 diabetes. Nephrol. Dial. Transplant. 27, 2853–2861 (2012).

    Article  CAS  PubMed  Google Scholar 

  96. Lygizos, M. I. et al. Heparanase mediates renal dysfunction during early sepsis in mice. Physiol. Rep. 1, e00153 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Grande, M. T. et al. Snail1-induced partial epithelial-to-mesenchymal transition drives renal fibrosis in mice and can be targeted to reverse established disease. Nat. Med. 21, 989–997 (2015).

    Article  CAS  PubMed  Google Scholar 

  98. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Masola, V. et al. Heparanase: a potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS ONE 11, e0160074 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Masola, V. et al. Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J. Biol. Chem. 287, 1478–1488 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Xu, D. & Esko, J. D. Demystifying heparan sulfate-protein interactions. Annu. Rev. Biochem. 83, 129–157 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Goodall, K. J., Poon, I. K., Phipps, S. & Hulett, M. D. Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS ONE 9, e109596 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Blich, M. et al. Macrophage activation by heparanase is mediated by TLR-2 and TLR-4 and associates with plaque progression. Arterioscler. Thromb. Vasc. Biol. 33, e56–e65 (2013).

    Article  CAS  PubMed  Google Scholar 

  104. Brennan, T. V. et al. Heparan sulfate, an endogenous TLR4 agonist, promotes acute GVHD after allogeneic stem cell transplantation. Blood 120, 2899–2908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ritchie, J. P. et al. SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin. Cancer Res. 17, 1382–1393 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nadanaka, S., Purunomo, E., Takeda, N., Tamura, J. & Kitagawa, H. Heparan sulfate containing unsubstituted glucosamine residues: biosynthesis and heparanase-inhibitory activity. J. Biol. Chem. 289, 15231–15243 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Hammond, E., Handley, P., Dredge, K. & Bytheway, I. Mechanisms of heparanase inhibition by the heparan sulfate mimetic PG545 and three structural analogues. FEBS Open Bio 3, 346–351 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Niu, T. T., Zhang, D. S., Chen, H. M. & Yan, X. J. Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified lambda-carrageenan oligosaccharides. Carbohydr. Polym. 125, 76–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  109. Gomes, C. L. et al. The protective role of fucosylated chondroitin sulfate, a distinct glycosaminoglycan, in a murine model of streptozotocin-induced diabetic nephropathy. PLoS ONE 9, e106929 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Myrup, B. et al. Effect of low-dose heparin on urinary albumin excretion in insulin-dependent diabetes mellitus. Lancet 345, 421–422 (1995).

    Article  CAS  PubMed  Google Scholar 

  111. van der Pijl, J. W. et al. Danaparoid sodium lowers proteinuria in diabetic nephropathy. J. Am. Soc. Nephrol. 8, 456–462 (1997).

    CAS  PubMed  Google Scholar 

  112. Tamsma, J. T., van der Woude, F. J. & Lemkes, H. H. Effect of sulphated glycosaminoglycans on albuminuria in patients with overt diabetic (type 1) nephropathy. Nephrol. Dial. Transplant. 11, 182–185 (1996).

    Article  CAS  PubMed  Google Scholar 

  113. Poplawska, A., Szelachowska, M., Topolska, J., Wysocka-Solowie, B. & Kinalska, I. Effect of glycosaminoglycans on urinary albumin excretion in insulin-dependent diabetic patients with micro-or macroalbuminuria. Diabetes Res. Clin. Pract. 38, 109–114 (1997).

    Article  CAS  PubMed  Google Scholar 

  114. Broekhuizen, L. N. et al. Effect of sulodexide on endothelial glycocalyx and vascular permeability in patients with type 2 diabetes mellitus. Diabetologia 53, 2646–2655 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lewis, E. J. et al. Sulodexide for kidney protection in type 2 diabetes patients with microalbuminuria: a randomized controlled trial. Am. J. Kidney Dis. 58, 729–736 (2011).

    Article  CAS  PubMed  Google Scholar 

  116. Packham, D. K. et al. Sulodexide fails to demonstrate renoprotection in overt type 2 diabetic nephropathy. J. Am. Soc. Nephrol. 23, 123–130 (2012).

    Article  CAS  PubMed  Google Scholar 

  117. Gambaro, G. et al. Oral sulodexide reduces albuminuria in microalbuminuric and macroalbuminuric type 1 and type 2 diabetic patients: the Di.N.A.S. randomized trial. J. Am. Soc. Nephrol. 13, 1615–1625 (2002).

    Article  CAS  PubMed  Google Scholar 

  118. Bang, K. et al. Anti-proteinuric effect of sulodexide in immunoglobulin a nephropathy. Yonsei Med. J. 52, 588–594 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Weissmann, M. et al. Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc. Natl Acad. Sci. USA 113, 704–709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Maione, A. et al. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers and combined therapy in patients with micro- and macroalbuminuria and other cardiovascular risk factors: a systematic review of randomized controlled trials. Nephrol. Dial. Transplant. 26, 2827–2847 (2011).

    Article  CAS  PubMed  Google Scholar 

  121. de Zeeuw, D. et al. Selective vitamin D receptor activation with paricalcitol for reduction of albuminuria in patients with type 2 diabetes (VITAL study): a randomised controlled trial. Lancet 376, 1543–1551 (2010).

    Article  CAS  PubMed  Google Scholar 

  122. Agarwal, R. Vitamin D, proteinuria, diabetic nephropathy, and progression of CKD. Clin. J. Am. Soc. Nephrol. 4, 1523–1528 (2009).

    Article  CAS  PubMed  Google Scholar 

  123. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/ct2/show/NCT01858532 (2016).

  124. de Zeeuw, D. et al. The effect of CCR2 inhibitor CCX140-B on residual albuminuria in patients with type 2 diabetes and nephropathy: a randomised trial. Lancet Diabetes Endocrinol. 3, 687–696 (2015).

    Article  CAS  PubMed  Google Scholar 

  125. Menne, J. et al. C-C motif-ligand 2 inhibition with emapticap pegol (NOX-E36) in type 2 diabetic patients with albuminuria. Nephrol. Dial. Transplant. http://dx.doi.org/10.1093/ndt/gfv459 (2016).

  126. Baricos, W. H. et al. Evidence suggesting a role for cathepsin L in an experimental model of glomerulonephritis. Arch. Biochem. Biophys. 288, 468–472 (1991).

    Article  CAS  PubMed  Google Scholar 

  127. Baricos, W. H., O'Connor, S. E., Cortez, S. L., Wu, L. T. & Shah, S. V. The cysteine proteinase inhibitor, E-64, reduces proteinuria in an experimental model of glomerulonephritis. Biochem. Biophys. Res. Commun. 155, 1318–1323 (1988).

    Article  CAS  PubMed  Google Scholar 

  128. Esko, J. D. & Lindahl, U. Molecular diversity of heparan sulfate. J. Clin. Invest. 108, 169–173 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang, L., Brown, J. R., Varki, A. & Esko, J. D. Heparin's anti-inflammatory effects require glucosamine 6-O-sulfation and are mediated by blockade of L and P-selectins. J. Clin. Invest. 110, 127–136 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Ferreras, C. et al. Endothelial heparan sulfate 6-O-sulfation levels regulate angiogenic responses of endothelial cells to fibroblast growth factor 2 and vascular endothelial growth factor. J. Biol. Chem. 287, 36132–36146 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lindahl, U., Backstrom, G., Thunberg, L. & Leder, I. G. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc. Natl Acad. Sci. USA 77, 6551–6555 (1980).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Edge, A. S. & Spiro, R. G. Characterization of novel sequences containing 3-O-sulfated glucosamine in glomerular basement membrane heparan sulfate and localization of sulfated disaccharides to a peripheral domain. J. Biol. Chem. 265, 15874–15881 (1990).

    CAS  PubMed  Google Scholar 

  133. Edge, A. S. & Spiro, R. G. A specific structural alteration in the heparan sulphate of human glomerular basement membrane in diabetes. Diabetologia 43, 1056–1059 (2000).

    Article  CAS  PubMed  Google Scholar 

  134. Carter, N. M., Ali, S. & Kirby, J. A. Endothelial inflammation: the role of differential expression of N-deacetylase/N-sulphotransferase enzymes in alteration of the immunological properties of heparan sulphate. J. Cell Sci. 116, 3591–3600 (2003).

    Article  CAS  PubMed  Google Scholar 

  135. Rops, A. L. W. M. et al. Modulation of heparan sulfate in the glomerular endothelial glycocalyx decreases leukocyte influx during experimental glomerulonephritis. Kidney Int. 86, 932–942 (2014).

    Article  CAS  PubMed  Google Scholar 

  136. Endlich, K., Kriz, W. & Witzgall, R. Update in podocyte biology. Curr. Opin. Nephrol. Hypertens. 10, 331–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  137. Rabelink, T. J. & de Zeeuw, D. The glycocalyx — linking albuminuria with renal and cardiovascular disease. Nat. Rev. Nephrol. 11, 667–676 (2015).

    Article  CAS  PubMed  Google Scholar 

  138. Buelli, S. et al. Beta-arrestin-1 drives endothelin-1-mediated podocyte activation and sustains renal injury. J. Am. Soc. Nephrol. 25, 523–533 (2014).

    Article  CAS  PubMed  Google Scholar 

  139. Mundel, P. & Reiser, J. Proteinuria: an enzymatic disease of the podocyte? Kidney Int. 77, 571–580 (2010).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by the Dutch Kidney Foundation through a collaborative GLYCOREN grant (CP 0903).

Author information

Authors and Affiliations

Authors

Contributions

All authors researched data for the article. T.J.R., B.M.v.d.B. and J.v.d.V. wrote the manuscript. T.J.R., B.M.v.d.B., M.G., G.W., M.E. and J.v.d.V. contributed to discussions of the content and reviewed or edited the manuscript before submission.

Corresponding author

Correspondence to Ton J. Rabelink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Related links

Related links

DATABASES

Protein Data Bank

UCSF Chimera software

Glossary

β-Linked glucuronides

Any substance produced by linking glucuronic acid to another substance via a glycosidic bond.

Non-reducing end

The terminal carbon of the polysaccharide, which has no free aldehyde or ketone group, and is not able to oxidize other molecules.

Heparinoid

A substance with activity similar to that of the anticoagulant heparin.

Spiegelmer

Trade name for an artificial RNA-like oligonucleotide built from l-ribose units, which are highly resistant to degradation by nucleases.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabelink, T., van den Berg, B., Garsen, M. et al. Heparanase: roles in cell survival, extracellular matrix remodelling and the development of kidney disease. Nat Rev Nephrol 13, 201–212 (2017). https://doi.org/10.1038/nrneph.2017.6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nrneph.2017.6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing