Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor

Abstract

Kaposi Sarcoma (KS) are opportunistic tumors, associated with human herpes virus 8 (HHV8) infection. KS development is highly favored by immune-depression and remains the second most frequent tumor in acquired immune deficiency syndrome patients. Although it has been shown that experimental expression of the HHV8 G-protein-coupled receptor (vGPCR) in the endothelial compartment is alone sufficient to recapitulate the formation and progression of KS-like lesions, its functional effects on endothelial homeostasis are not fully understood. Here we show that vGPCR expression in endothelial cells induces an increase in paracellular permeability both in vivo and in vitro. By using pharmacological inhibitors and small interference RNA-based knockdown, we demonstrate an essential role for the PI(3)Kinase-γ/Rac nexus in vGPCR-mediated permeability. This was further accompanied by dramatic remodeling of VE-cadherin-dependent cell–cell junctions. Importantly, this in vitro vGPCR-initiated signaling signature was observed in a large panel of human KS. Altogether, our results support the hypothesis that endothelial vGPCR signaling is co-opted in KS, and unveil new key cellular targets for therapeutic intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ascherl G, Hohenadl C, Schatz O, Shumay E, Bogner J, Eckhart L et al (1999). Infection with human immunodeficiency virus-1 increases expression of vascular endothelial cell growth factor in T cells: implications for acquired immunodeficiency syndrome-associated vasculopathy. Blood 93: 4232–4241.

    CAS  PubMed  Google Scholar 

  • Bais C, Santomasso B, Coso O, Arvanitakis L, Raaka EG, Gutkind JS et al. (1998). G-protein-coupled receptor of Kaposi′s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391: 86–89.

    Article  CAS  Google Scholar 

  • Barber DF, Bartolome A, Hernandez C, Flores JM, Redondo C, Fernandez-Arias C et al. (2005). PI3Kgamma inhibition blocks glomerulonephritis and extends lifespan in a mouse model of systemic lupus. Nat Med 11: 933–935.

    Article  CAS  Google Scholar 

  • Camps M, Ruckle T, Ji H, Ardissone V, Rintelen F, Shaw J et al. (2005). Blockade of PI3Kgamma suppresses joint inflammation and damage in mouse models of rheumatoid arthritis. Nat Med 11: 936–943.

    Article  CAS  Google Scholar 

  • Cesarman E, Mesri EA . (2007). Kaposi sarcoma-associated herpesvirus and other viruses in human lymphomagenesis. Curr Top Microbiol Immunol 312: 263–287.

    CAS  PubMed  Google Scholar 

  • Chaisuparat R, Hu J, Jham BC, Knight ZA, Shokat KM, Montaner S . (2008). Dual inhibition of PI3Kalpha and mTOR as an alternative treatment for Kaposi's sarcoma. Cancer Res 68: 8361–8368.

    Article  CAS  Google Scholar 

  • Chang Y, Cesarman E, Pessin MS, Lee F, Culpepper J, Knowles DM et al. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science 266: 1865–1869.

    Article  CAS  Google Scholar 

  • Chiou CJ, Poole LJ, Kim PS, Ciufo DM, Cannon JS, ap Rhys CM et al. (2002). Patterns of gene expression and a transactivation function exhibited by the vGCR (ORF74) chemokine receptor protein of Kaposi's sarcoma-associated herpesvirus. J Virol 76: 3421–3439.

    Article  CAS  Google Scholar 

  • Dejana E . (2004). Endothelial cell-cell junctions: happy together. Nat Rev Mol Cell Biol 5: 261–270.

    Article  CAS  Google Scholar 

  • Dupin N, Fisher C, Kellam P, Ariad S, Tulliez M, Franck N et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi′s sarcoma, multicentric Castleman′s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96: 4546–4551.

    Article  CAS  Google Scholar 

  • Dupin N, Grange PA . (2006). Looking for the target cell of Kaposi's sarcoma-associated herpesvirus. J Invest Dermatol 126: 545–547.

    Article  CAS  Google Scholar 

  • Gavard J, Gutkind JS . (2006). VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat Cell Biol 8: 1223–1234.

    Article  CAS  Google Scholar 

  • Gavard J, Hou X, Qu Y, Masedunskas A, Martin D, Weigert R et al. (2009). A role for a CXCR2/phosphatidylinositol 3-kinase gamma signaling axis in acute and chronic vascular permeability. Mol Cell Biol 29: 2469–2480.

    Article  CAS  Google Scholar 

  • Gavard J, Lambert M, Grosheva I, Marthiens V, Irinopoulou T, Riou JF et al. (2004). Lamellipodium extension and cadherin adhesion: two cell responses to cadherin activation relying on distinct signalling pathways. J Cell Sci 117: 257–270.

    Article  CAS  Google Scholar 

  • Gavard J, Patel V, Gutkind JS . (2008). Angiopoietin-1 prevents VEGF-induced endothelial permeability by sequestering Src through mDia. Dev Cell 14: 25–36.

    Article  CAS  Google Scholar 

  • Grisotto MG, Garin A, Martin AP, Jensen KK, Chan P, Sealfon SC et al. (2006). The human herpesvirus 8 chemokine receptor vGPCR triggers autonomous proliferation of endothelial cells. J Clin Invest 116: 1264–1273.

    Article  CAS  Google Scholar 

  • Grundhoff A, Ganem D . (2004). Inefficient establishment of KSHV latency suggests an additional role for continued lytic replication in Kaposi sarcoma pathogenesis. J Clin Invest 113: 124–136.

    Article  CAS  Google Scholar 

  • Martin D, Galisteo R, Ji Y, Montaner S, Gutkind JS . (2008). An NF-kappaB gene expression signature contributes to Kaposi′s sarcoma virus vGPCR-induced direct and paracrine neoplasia. Oncogene 27: 1844–1852.

    Article  CAS  Google Scholar 

  • Maurer T, Ponte M, Leslie K . (2007). HIV-associated Kaposi's sarcoma with a high CD4 count and a low viral load. N Engl J Med 357: 1352–1353.

    Article  CAS  Google Scholar 

  • Mitsuyasu RT . (2000). Update on the pathogenesis and treatment of Kaposi sarcoma. Curr Opin Oncol 12: 174–180.

    Article  CAS  Google Scholar 

  • Monini P, Sgadari C, Grosso MG, Bellino S, Di Biagio A, Toschi E et al. (2009). Clinical course of classic Kaposi's sarcoma in HIV-negative patients treated with the HIV protease inhibitor indinavir. AIDS 23: 534–538.

    Article  CAS  Google Scholar 

  • Montaner S, Sodhi A, Molinolo A, Bugge TH, Sawai ET, He Y et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi's sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3: 23–36.

    Article  CAS  Google Scholar 

  • Montaner S, Sodhi A, Pece S, Mesri EA, Gutkind JS . (2001). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor promotes endothelial cell survival through the activation of Akt/protein kinase B. Cancer Res 61: 2641–2648.

    CAS  PubMed  Google Scholar 

  • Montaner S, Sodhi A, Ramsdell AK, Martin D, Hu J, Sawai ET et al. (2006). The Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor as a therapeutic target for the treatment of Kaposi's sarcoma. Cancer Res 66: 168–174.

    Article  CAS  Google Scholar 

  • Montaner S, Sodhi A, Servitja JM, Ramsdell AK, Barac A, Sawai ET et al. (2004). The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104: 2903–2911.

    Article  CAS  Google Scholar 

  • Mutlu AD, Cavallin LE, Vincent L, Chiozzini C, Eroles P, Duran EM et al. (2007). In vivo-restricted and reversible malignancy induced by human herpesvirus-8 KSHV: a cell and animal model of virally induced Kaposi's sarcoma. Cancer Cell 11: 245–258.

    Article  CAS  Google Scholar 

  • Oksenhendler E, Boulanger E, Galicier L, Du MQ, Dupin N, Diss TC et al. (2002). High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood 99: 2331–2336.

    Article  CAS  Google Scholar 

  • Orenstein JM, Alkan S, Blauvelt A, Jeang KT, Weinstein MD, Ganem D et al. (1997). Visualization of human herpesvirus type 8 in Kaposi's sarcoma by light and transmission electron microscopy. AIDS 11: F35–F45.

    Article  CAS  Google Scholar 

  • Qian LW, Greene W, Ye F, Gao SJ . (2008). Kaposi's sarcoma-associated herpesvirus disrupts adherens junctions and increases endothelial permeability by inducing degradation of VE-cadherin. J Virol 82: 11902–11912.

    Article  CAS  Google Scholar 

  • Sgadari C, Barillari G, Toschi E, Carlei D, Bacigalupo I, Baccarini S et al. (2002). HIV protease inhibitors are potent anti-angiogenic molecules and promote regression of Kaposi sarcoma. Nat Med 8: 225–232.

    Article  CAS  Google Scholar 

  • Sodhi A, Chaisuparat R, Hu J, Ramsdell AK, Manning BD, Sausville EA et al. (2006). The TSC2/mTOR pathway drives endothelial cell transformation induced by the Kaposi's sarcoma-associated herpesvirus G protein-coupled receptor. Cancer Cell 10: 133–143.

    Article  CAS  Google Scholar 

  • Sodhi A, Montaner S, Gutkind JS . (2004a). Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5: 998–1012.

    Article  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Gomez-Roman JJ, Li Y, Sausville EA et al. (2004b). Akt plays a central role in sarcomagenesis induced by Kaposi's sarcoma herpesvirus-encoded G protein-coupled receptor. Proc Natl Acad Sci USA 101: 4821–4826.

    Article  CAS  Google Scholar 

  • Sodhi A, Montaner S, Patel V, Zohar M, Bais C, Mesri EA et al. (2000). The Kaposi's sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60: 4873–4880.

    CAS  Google Scholar 

  • Stallone G, Schena A, Infante B, Di Paolo S, Loverre A, Maggio G et al. (2005). Sirolimus for Kaposi's sarcoma in renal-transplant recipients. N Engl J Med 352: 1317–1323.

    Article  CAS  Google Scholar 

  • Szajerka T, Jablecki J . (2007). Kaposi's sarcoma revisited. AIDS Rev 9: 230–236.

    PubMed  Google Scholar 

  • Taddei A, Giampietro C, Conti A, Orsenigo F, Breviario F, Pirazzoli V et al. (2008). Endothelial adherens junctions control tight junctions by VE-cadherin-mediated upregulation of claudin-5. Nat Cell Biol 10: 923–934.

    Article  CAS  Google Scholar 

  • Weis SM, Cheresh DA . (2005). Pathophysiological consequences of VEGF-induced vascular permeability. Nature 437: 497–504.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank N. Bidère (Inserm U1014, Université Paris-Sud, Hopital Paul Brousse, Villejuif, France) for helpful discussions and comments, A Schmitt (Institut Cochin, Paris, France) for technical help on electron microscopy experiments, Anne Audebourg and Brigitte Radenen (Service d'Anatomie et de Cytologie Pathologique, Hôpital Cochin, Paris, France) for technical help on histological staining, and Nina Feinberg (OPCB, NIDCR, NIH, Bethesda, MD, USA) for technical help on the initial project. This research was funded by Ligue Nationale contre le Cancer, comité de Paris and by a Marie Curie International Reintegration Grant within the 7th European Community Framework Programme (PIRG04-GA-2008-239126). JD is supported by a post-doctoral fellowship from Fondation pour la Recherche Médicale, ALG by the PhD program from Université Paris 5 and EMGM by a post-doctoral fellowship from Association pour la Recherche sur le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Gavard.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dwyer, J., Le Guelte, A., Galan Moya, E. et al. Remodeling of VE-cadherin junctions by the human herpes virus 8 G-protein coupled receptor. Oncogene 30, 190–200 (2011). https://doi.org/10.1038/onc.2010.411

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.411

Keywords

This article is cited by

Search

Quick links