Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The somatostatin-secreting pancreatic δ-cell in health and disease

Abstract

The somatostatin-secreting δ-cells comprise ~5% of the cells of the pancreatic islets. The δ-cells have complex morphology and might interact with many more islet cells than suggested by their low numbers. δ-Cells contain ATP-sensitive potassium channels, which open at low levels of glucose but close when glucose is elevated. This closure initiates membrane depolarization and electrical activity and increased somatostatin secretion. Factors released by neighbouring α-cells or β-cells amplify the glucose-induced effects on somatostatin secretion from δ-cells, which act locally within the islets as paracrine or autocrine inhibitors of insulin, glucagon and somatostatin secretion. The effects of somatostatin are mediated by activation of somatostatin receptors coupled to the inhibitory G protein, which culminates in suppression of the electrical activity and exocytosis in α-cells and β-cells. Somatostatin secretion is perturbed in animal models of diabetes mellitus, which might explain the loss of appropriate hypoglycaemia-induced glucagon secretion, a defect that could be mitigated by somatostatin receptor 2 antagonists. Somatostatin antagonists or agents that suppress somatostatin secretion have been proposed as an adjunct to insulin therapy. In this Review, we summarize the cell physiology of somatostatin secretion, what might go wrong in diabetes mellitus and the therapeutic potential of agents targeting somatostatin secretion or action.

Key points

  • The δ-cells of the pancreatic islets secrete somatostatin, a powerful paracrine inhibitor of both insulin and glucagon secretion from islet α-cells and β-cells.

  • δ-Cells are electrically excitable, and glucose stimulates action potential firing and somatostatin secretion by both metabolic and non-metabolic effects.

  • Factors (such as GABA and urocortin 3) released by the β-cells stimulate somatostatin secretion, thereby providing a mechanism for feedback control of insulin and glucagon secretion during hyperglycaemia.

  • Diabetes mellitus is associated with impaired glucagon secretion in response to hypoglycaemia; this effect is corrected by somatostatin antagonists, suggesting that diabetes mellitus involves hypersecretion of somatostatin during hypoglycaemia.

  • Agents that inhibit somatostatin secretion or action might reduce the risk of insulin-induced hypoglycaemia and should be considered as an adjunct to insulin therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: δ-Cell histology and somatostatin secretion.
Fig. 2: Regulation of somatostatin secretion by δ-cell electrical activity.
Fig. 3: Somatostatin signalling in pancreatic islets.

Similar content being viewed by others

References

  1. Hellman, B. Actual distribution of the number and volume of the islets of Langerhans in different size classes in non-diabetic humans of varying ages. Nature 184 (Suppl. 19), 1498–1499 (1959).

    Article  PubMed  Google Scholar 

  2. Ionescu-Tirgoviste, C. et al. A 3D map of the islet routes throughout the healthy human pancreas. Sci. Rep. 5, 14634 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Frayn, K. N. Metabolic Regulation: A Human Perspective 3rd edn (Wiley-Blackwell, 2010).

  4. Cabrera, O. et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl Acad. Sci. USA 103, 2334–2339 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Gerich, J. E., Langlois, M., Noacco, C., Karam, J. H. & Forsham, P. H. Lack of glucagon response to hypoglycemia in diabetes: evidence for an intrinsic pancreatic alpha cell defect. Science 182, 171–173 (1973).

    Article  PubMed  CAS  Google Scholar 

  6. Muller, W. A., Faloona, G. R., Aguilar-Parada, E. & Unger, R. H. Abnormal alpha-cell function in diabetes. Response to carbohydrate and protein ingestion. N. Engl. J. Med. 283, 109–115 (1970).

    Article  PubMed  CAS  Google Scholar 

  7. Cryer, P. E. Hypoglycemia-associated autonomic failure in diabetes: maladaptive, adaptive, or both? Diabetes 64, 2322–2323 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ashcroft, F. M. & Rorsman, P. Diabetes mellitus and the beta cell: the last ten years. Cell 148, 1160–1171 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rorsman, P. & Braun, M. Regulation of insulin secretion in human pancreatic islets. Annu. Rev. Physiol. 75, 155–179 (2013).

    Article  PubMed  CAS  Google Scholar 

  10. Rorsman, P., Ramracheya, R., Rorsman, N. J. & Zhang, Q. ATP-regulated potassium channels and voltage-gated calcium channels in pancreatic alpha and beta cells: similar functions but reciprocal effects on secretion. Diabetologia 57, 1749–1761 (2014).

    Article  PubMed  CAS  Google Scholar 

  11. Gylfe, E. & Gilon, P. Glucose regulation of glucagon secretion. Diabetes Res. Clin. Pract. 103, 1–10 (2014).

    Article  PubMed  CAS  Google Scholar 

  12. Karimian, N. et al. Somatostatin receptor type 2 antagonism improves glucagon counterregulation in biobreeding diabetic rats. Diabetes 62, 2968–2977 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Yue, J. T. et al. Amelioration of hypoglycemia via somatostatin receptor type 2 antagonism in recurrently hypoglycemic diabetic rats. Diabetes 62, 2215–2222 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Yue, J. T. et al. Somatostatin receptor type 2 antagonism improves glucagon and corticosterone counterregulatory responses to hypoglycemia in streptozotocin-induced diabetic rats. Diabetes 61, 197–207 (2012).

    Article  PubMed  CAS  Google Scholar 

  15. Dobbs, R. et al. Glucagon: role in the hyperglycemia of diabetes mellitus. Science 187, 544–547 (1975).

    Article  PubMed  CAS  Google Scholar 

  16. Gerich, J. E. et al. Prevention of human diabetic ketoacidosis by somatostatin. Evidence for an essential role of glucagon. N. Engl. J. Med. 292, 985–989 (1975).

    Article  PubMed  CAS  Google Scholar 

  17. Raskin, P. & Unger, R. H. Hyperglucagonemia and its suppression. Importance in the metabolic control of diabetes. N. Engl. J. Med. 299, 433–436 (1978).

    Article  PubMed  CAS  Google Scholar 

  18. Gerich, J. E., Schultz, T. A., Lewis, S. B. & Karam, J. H. Clinical evaluation of somatostatin as a potential adjunct to insulin in management of diabetes-mellitus. Diabetologia 13, 537–544 (1977).

    Article  PubMed  CAS  Google Scholar 

  19. Brazeau, P. et al. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179, 77–79 (1973).

    Article  PubMed  CAS  Google Scholar 

  20. Guillemin, R. Somatostatin: the early days. Metabolism 41, 2–4 (1992).

    Article  PubMed  CAS  Google Scholar 

  21. Baskin, D. G. A. Historical perspective on the identification of cell types in pancreatic islets of Langerhans by staining and histochemical techniques. J. Histochem. Cytochem. 63, 543–558 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Weckbecker, G. et al. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat. Rev. Drug Discov. 2, 999–1017 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Brereton, M. F., Vergari, E., Zhang, Q. & Clark, A. Alpha-, Delta- and PP-cells: are they the architectural cornerstones of islet structure and co-ordination? J. Histochem. Cytochem. 63, 575–591 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rorsman, P. & Ashcroft, F. M. Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol. Rev. 98, 117–214 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Zhang, Q. et al. Role of K-ATP channels in glucose-regulated glucagon secretion and impaired counterregulation in type 2 diabetes. Cell Metab. 18, 871–882 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Vieira, E., Salehi, A. & Gylfe, E. Glucose inhibits glucagon secretion by a direct effect on mouse pancreatic alpha cells. Diabetologia 50, 370–379 (2007).

    Article  PubMed  CAS  Google Scholar 

  27. Zhang, Q. et al. Na+ current properties in islet alpha- and beta-cells reflect cell-specific Scn3a and Scn9a expression. J. Physiol. 592, 4677–4696 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Adriaenssens, A. et al. A transcriptome-led exploration of molecular mechanisms regulating somatostatin-producing D-cells in the gastric epithelium. Endocrinology 156, 3924–3936 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Benninger, R. K. P., Zhang, M., Head, W. S., & Satin, L. S. & Piston, D. W. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J. 95, 5048–5061 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ravier, M. A. et al. Loss of connexin36 channels alters beta-cell coupling, islet synchronization of glucose-induced Ca2+ and insulin oscillations, and basal insulin release. Diabetes 54, 1798–1807 (2005).

    Article  PubMed  CAS  Google Scholar 

  31. Zhang, Q. et al. Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans. Philos. Trans. A Math. Phys. Eng. Sci. 366, 3503–3523 (2008).

    Article  PubMed  Google Scholar 

  32. Briant, L. J. B. et al. delta-cells and beta-cells are electrically coupled and regulate alpha-cell activity via somatostatin. J. Physiol. 596, 197–215 (2018).

    Article  PubMed  CAS  Google Scholar 

  33. Martinez, V. & Taché, Y. in Encyclopedia of Gastroenterology (ed. Johnson, L. R.) 426–433 (Elsevier, 2004).

  34. Gribble, F. M. & Reimann, F. Enteroendocrine cells: chemosensors in the intestinal epithelium. Annu. Rev. Physiol. 78, 277–299 (2016).

    Article  PubMed  CAS  Google Scholar 

  35. Mace, O. J., Tehan, B. & Marshall, F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol. Res. Persp. 3, e00155 (2015).

    Google Scholar 

  36. Sosa-Pineda, B., Chowdhury, K., Torres, M., Oliver, G. & Gruss, P. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 386, 399–402 (1997).

    Article  PubMed  CAS  Google Scholar 

  37. Adriaenssens, A. E. et al. Transcriptomic profiling of pancreatic alpha, beta and delta cell populations identifies delta cells as a principal target for ghrelin in mouse islets. Diabetologia 59, 2156–2165 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. DiGruccio, M. R. et al. Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets. Mol. Metab. 5, 449–458 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Walker, J. N. et al. Regulation of glucagon secretion by glucose: paracrine, intrinsic or both? Diabetes Obes. Metab. 13 (Suppl. 1), 95–105 (2011).

    Article  PubMed  CAS  Google Scholar 

  40. Zhang, Q. et al. R-Type Ca(2+)-channel-evoked CICR regulates glucose-induced somatostatin secretion. Nat. Cell Biol. 9, 453–460 (2007).

    Article  PubMed  CAS  Google Scholar 

  41. Hermansen, K. Pancreatic D-cell recognition of D-glucose: studies with D-glucose, D-glyceraldehyde, dihydroxyacetone, D-mannoheptulose, D-fructose, D-galactose, and D-ribose. Diabetes 30, 203–210 (1981).

    Article  PubMed  CAS  Google Scholar 

  42. Sako, Y., Wasada, T., Umeda, F. & Ibayashi, H. Effect of glibenclamide on pancreatic hormone release from isolated perifused islets of normal and cysteamine-treated rats. Metabolism 35, 944–949 (1986).

    Article  PubMed  CAS  Google Scholar 

  43. Patton, G. S. et al. Pancreatic immunoreactive somatostatin release. Proc. Natl Acad. Sci. USA 74, 2140–2143 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Ipp, E. et al. Release of immunoreactive somatostatin from the pancreas in response to glucose, amino acids, pancreozymin-cholecystokinin, and tolbutamide. J. Clin. Invest. 60, 760–765 (1977).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Gerber, P. P., Trimble, E. R., Wollheim, C. B. & Renold, A. E. Effect of insulin on glucose- and arginine-stimulated somatostatin secretion from the isolated perfused rat pancreas. Endocrinology 109, 279–283 (1981).

    Article  PubMed  CAS  Google Scholar 

  46. Ashcroft, F. M., Coles, B., Gummerson, N., Sakura, H. & Smith, P. A. 2 cationic amino-acid transporters expressed in pancreatic beta-cells. J. Physiol. 487P, P192–P193 (1995).

    Google Scholar 

  47. Panten, U., Kriegstein, E., Poser, W., Schonborn, J. & Hasselblatt, A. Effects of L-leucine and alpha-ketoisocaproic acid upon insulin secretion and metabolism of isolated pancreatic islets. FEBS Lett. 20, 225–228 (1972).

    Article  PubMed  CAS  Google Scholar 

  48. Richieri, G. V. & Kleinfeld, A. M. Unbound free fatty-acid levels in human serum. J. Lipid Res. 36, 229–240 (1995).

    PubMed  CAS  Google Scholar 

  49. Olofsson, C. S., Salehi, A., Gopel, S. O., Holm, C. & Rorsman, P. Palmitate stimulation of glucagon secretion in mouse pancreatic alpha-cells results from activation of L-type calcium channels and elevation of cytoplasmic calcium. Diabetes 53, 2836–2843 (2004).

    Article  PubMed  CAS  Google Scholar 

  50. Stone, V. M. et al. GPR120 (FFAR4) is preferentially expressed in pancreatic delta cells and regulates somatostatin secretion from murine islets of Langerhans. Diabetologia 57, 1182–1191 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Olofsson, C. S., Salehi, A., Holm, C. & Rorsman, P. Palmitate increases L-type Ca2+ currents and the size of the readily releasable granule pool in mouse pancreatic beta-cells. J. Physiol. 557, 935–948 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Efendic, S., Enzmann, F., Nylen, A., Uvnas-Wallensten, K. & Luft, R. Effect of glucose/sulfonylurea interaction on release of insulin, glucagon, and somatostatin from isolated perfused rat pancreas. Proc. Natl Acad. Sci. USA 76, 5901–5904 (1979).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Hauge-Evans, A. C. et al. Somatostatin secreted by islet delta-cells fulfills multiple roles as a paracrine regulator of islet function. Diabetes 58, 403–411 (2009).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Hermansen, K. Tolbutamide, glucose, calcium, and somatostatin secretion. Acta Endocrinol. 99, 86–93 (1982).

    Article  PubMed  CAS  Google Scholar 

  55. van der Meulen, T. et al. Urocortin3 mediates somatostatin-dependent negative feedback control of insulin secretion. Nat. Med. 21, 769–776 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Braun, M. et al. Somatostatin release, electrical activity, membrane currents and exocytosis in human pancreatic delta cells. Diabetologia 52, 1566–1578 (2009).

    Article  PubMed  CAS  Google Scholar 

  57. Gopel, S. O., Kanno, T., Barg, S. & Rorsman, P. Patch-clamp characterisation of somatostatin-secreting -cells in intact mouse pancreatic islets. J. Physiol. 528, 497–507 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Hermansen, K., Lindskog, S. & Ahren, B. Stimulation of somatostatin secretion by 3-O-methylglucose in the perfused dog pancreas. Int. J. Pancreatol. 20, 103–107 (1996).

    PubMed  CAS  Google Scholar 

  59. Briant, L. J. et al. Functional identification of islet cell types by electrophysiological fingerprinting. J. R. Soc. Interface 14, 20160999 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Segerstolpe, A. et al. Single-cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell. Metab. 24, 593–607 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Samols, E., Stagner, J. I., Ewart, R. B. L. & Marks, V. The order of islet microvascular cellular perfusion is B→A→D in the perfused rat pancreas. J. Clin. Invest. 82, 350–353 (1988).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Hauge-Evans, A. C., Anderson, R. L., Persaud, S. J. & Jones, P. M. Delta cell secretory responses to insulin secretagogues are not mediated indirectly by insulin. Diabetologia 55, 1995–2004 (2012).

    Article  PubMed  CAS  Google Scholar 

  63. Honey, R. N., Fallon, M. B. & Weir, G. C. Effects of exogenous insulin, glucagon, and somatostatin on islet hormone secretion in the perfused chicken pancreas. Metabolism 29, 1242–1246 (1980).

    Article  PubMed  CAS  Google Scholar 

  64. Weir, G. C., Samols, E., Day, J. A. Jr & Patel, Y. C. Glucose and glucagon stimulate the secretion of somatostatin from the perfused canine pancreas. Metabolism 27, 1223–1226 (1978).

    Article  PubMed  CAS  Google Scholar 

  65. Lewis, K. et al. Identification of urocortin III, an additional member of the corticotropin-releasing factor (CRF) family with high affinity for the CRF2 receptor. Proc. Natl Acad. Sci. USA 98, 7570–7575 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Braun, M. et al. Gamma-aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic beta-cells. Diabetes 59, 1694–1701 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Rodriguez-Diaz, R. et al. Innervation patterns of autonomic axons in the human endocrine pancreas. Cell Metab. 14, 45–54 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. de Heer, J., Rasmussen, C., Coy, D. H. & Holst, J. J. Glucagon-like peptide-1, but not glucose-dependent insulinotropic peptide, inhibits glucagon secretion via somatostatin (receptor subtype 2) in the perfused rat pancreas. Diabetologia 51, 2263–2270 (2008).

    Article  PubMed  CAS  Google Scholar 

  69. Gerber, P. P., Trimble, E. R., Wollheim, C. B., Renold, A. E. & Miller, R. E. Glucose and cyclic AMP as stimulators of somatostatin and insulin secretion from the isolated, perfused rat pancreas: a quantitative study. Diabetes 30, 40–44 (1981).

    Article  PubMed  CAS  Google Scholar 

  70. Sorenson, R. L., Elde, R. P. & Seybold, V. Effect of norepinephrine on insulin, glucagon, and somatostatin secretion in isolated perifused rat islets. Diabetes 28, 899–904 (1979).

    Article  PubMed  CAS  Google Scholar 

  71. Berts, A., Ball, A., Dryselius, G., Gylfe, E. & Hellman, B. Glucose stimulation of somatostatin-producing islet cells involves oscillatory Ca2+ signaling. Endocrinology 137, 693–697 (1996).

    Article  PubMed  CAS  Google Scholar 

  72. Nadal, A., Quesada, I. & Soria, B. Homologous and heterologous asynchronicity between identified alpha-, beta- and delta-cells within intact islets of Langerhans in the mouse. J. Physiol. 517, 85–93 (1999).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Quesada, I., Nadal, A. & Soria, B. Different effects of tolbutamide and diazoxide in alpha, beta-, and delta-cells within intact islets of Langerhans. Diabetes 48, 2390–2397 (1999).

    Article  PubMed  CAS  Google Scholar 

  74. Hermansen, K., Christensen, S. E. & Orskov, H. Characterization of somatostatin release from the pancreas: the role of potassium. Scand. J. Clin. Lab. Invest. 39, 717–722 (1979).

    Article  PubMed  CAS  Google Scholar 

  75. Fill, M. & Copello, J. A. Ryanodine receptor calcium release channels. Physiol. Rev. 82, 893–922 (2002).

    Article  PubMed  CAS  Google Scholar 

  76. D’Alessio, D. A. & Ensinck, J. W. Fasting and postprandial concentrations of somatostatin-28 and somatostatin-14 in type II diabetes in men. Diabetes 39, 1198–1202 (1990).

    Article  PubMed  Google Scholar 

  77. Taborsky, G. J. Jr & Ensinck, J. W. Contribution of the pancreas to circulating somatostatin-like immunoreactivity in the normal dog. J. Clin. Invest. 73, 216–223 (1984).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Schusdziarra, V., Dobbs, R. E., Harris, V. & Unger, R. H. Immunoreactive somatostatin levels in plasma of normal and alloxan diabetic dogs. FEBS Lett. 81, 69–72 (1977).

    Article  PubMed  CAS  Google Scholar 

  79. Patel, Y. C. Somatostatin and its receptor family. Front. Neuroendocrinol. 20, 157–198 (1999).

    Article  PubMed  CAS  Google Scholar 

  80. Blodgett, D. M. et al. Novel observations from next-generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64, 3172–3181 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Braun, M. The somatostatin receptor in human pancreatic beta-cells. Vitam. Horm. 95, 165–193 (2014).

    Article  PubMed  CAS  Google Scholar 

  82. Kailey, B. et al. SSTR2 is the functionally dominant somatostatin receptor in human pancreatic beta- and alpha-cells. Am. J. Physiol. Endocrinol. Metab. 303, E1107–1116 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Renstrom, E., Ding, W. G., Bokvist, K. & Rorsman, P. Neurotransmitter-induced inhibition of exocytosis in insulin-secreting beta cells by activation of calcineurin. Neuron 17, 513–522 (1996).

    Article  PubMed  CAS  Google Scholar 

  84. Gromada, J., Hoy, M., Buschard, K., Salehi, A. & Rorsman, P. Somatostatin inhibits exocytosis in rat pancreatic alpha-cells by G(i2)-dependent activation of calcineurin and depriming of secretory granules. J. Physiol. 535, 519–532 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Orgaard, A. & Holst, J. J. The role of somatostatin in GLP-1-induced inhibition of glucagon secretion in mice. Diabetologia 60, 1731–1739 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Reubi, J. C. & Schonbrunn, A. Illuminating somatostatin analog action at neuroendocrine tumor receptors. Trends Pharmacol. Sci. 34, 676–688 (2013).

    Article  PubMed  CAS  Google Scholar 

  87. Yoshitomi, H. et al. Involvement of MAP kinase and c-fos signaling in the inhibition of cell growth by somatostatin. Am. J. Physiol. Endocrinol. Metab. 272, E769–E774 (1997).

    Article  CAS  Google Scholar 

  88. Vivot, K. et al. The regulator of G-protein signaling RGS16 promotes insulin secretion and beta-cell proliferation in rodent and human islets. Mol. Metab. 5, 988–996 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Berger, M. et al. G alpha(i/o)-coupled receptor signaling restricts pancreatic beta-cell expansion. Proc. Natl Acad. Sci. USA 112, 2888–2893 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Chera, S. et al. Diabetes recovery by age-dependent conversion of pancreatic delta-cells into insulin producers. Nature 514, 503–507 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Unger, R. H. The Banting Memorial Lecture 1975. Diabetes and the alpha cell. Diabetes 25, 136–151 (1976).

    Article  PubMed  CAS  Google Scholar 

  92. Hermansen, K., Orskov, H. & Christensen, S. E. Streptozotocin diabetes: a glucoreceptor dysfunction affecting D cells as well as B and A cells. Diabetologia 17, 385–389 (1979).

    Article  PubMed  CAS  Google Scholar 

  93. Abdel-Halim, S. M., Guenifi, A., Efendic, S. & Ostenson, C. G. Both somatostatin and insulin responses to glucose are impaired in the perfused pancreas of the spontaneously noninsulin-dependent diabetic GK (Goto-Kakizaki) rats. Acta Physiol. Scand. 148, 219–226 (1993).

    Article  PubMed  CAS  Google Scholar 

  94. Weir, G. C., Clore, E. T., Zmachinski, C. J. & Bonner-Weir, S. Islet secretion in a new experimental model for non-insulin-dependent diabetes. Diabetes 30, 590–595 (1981).

    Article  PubMed  CAS  Google Scholar 

  95. Conlon, J. M., Mcculloch, A. J. & Alberti, K. G. M. M. Circulating somatostatin concentrations in healthy and non-insulin-dependent (type-II) diabetic subjects. Diabetes 32, 723–729 (1983).

    Article  PubMed  CAS  Google Scholar 

  96. Cryer, P. E. Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia. Diabetes 63, 2188–2195 (2014).

    Article  PubMed  Google Scholar 

  97. Currie, C. J. et al. Survival as a function of HbA(1c) in people with type 2 diabetes: a retrospective cohort study. Lancet 375, 481–489 (2010).

    Article  PubMed  CAS  Google Scholar 

  98. Saaddine, J. B. et al. Distribution of HbA(1c) levels for children and young adults in the U. S.: Third National Health and Nutrition Examination Survey. Diabetes Care 25, 1326–1330 (2002).

    Article  PubMed  Google Scholar 

  99. Taleb, N. & Rabasa-Lhoret, R. Can somatostatin antagonism prevent hypoglycaemia during exercise in type 1 diabetes? Diabetologia 59, 1632–1635 (2016).

    Article  PubMed  CAS  Google Scholar 

  100. Nicolas, G. P. et al. Safety, biodistribution, and radiation dosimetry of 68Ga-OPS202 (68Ga-NODAGA-JR11) in patients with gastroenteropancreatic neuroendocrine tumors: a prospective phase I imaging study. J. Nucl. Med. https://doi.org/10.2967/jnumed.117.199737 (2017).

  101. Caduff, A. et al. Dynamics of blood electrolytes in repeated hyper- and/or hypoglycaemic events in patients with type 1 diabetes. Diabetologia 54, 2678–2689 (2011).

    Article  PubMed  CAS  Google Scholar 

  102. Jensen, H. K., Brabrand, M., Vinholt, P. J., Hallas, J. & Lassen, A. T. Hypokalemia in acute medical patients: risk factors and prognosis. Am. J. Med. 128, 60–67.e1 (2015).

    Article  PubMed  CAS  Google Scholar 

  103. Kacheva, S. et al. QT prolongation caused by insulin-induced hypoglycaemia — an interventional study in 119 individuals. Diabetes Res. Clin. Pract. 123, 165–172 (2017).

    Article  PubMed  CAS  Google Scholar 

  104. Hermansen, K., Christensen, S. E. & Orskov, H. The significance of the Na+/K+ pump for somatostatin release. Horm. Metab. Res. 12, 23–25 (1980).

    Article  PubMed  CAS  Google Scholar 

  105. Rolfe, D. F. & Brown, G. C. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol. Rev. 77, 731–758 (1997).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Work discussed in this Review was supported by a Wellcome Trust Senior Investigator Award (095531), the Knut and Alice Wallenberg Foundation, the Swedish Research Council, the Hartwell Foundation for Biomedical Research (201500731), the Juvenile Diabetes Research Foundation (CDA-2-2013-54) and the US NIH (DK110276).

Reviewer information

Nature Reviews Endocrinology thanks P. Flatt and G. Weir for their contribution to the peer review of this work.

Author information

Authors and Affiliations

Authors

Contributions

P.R. and M.O.H. both researched the data for the article, provided substantial contributions to discussion of the content, wrote the article and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Patrik Rorsman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rorsman, P., Huising, M.O. The somatostatin-secreting pancreatic δ-cell in health and disease. Nat Rev Endocrinol 14, 404–414 (2018). https://doi.org/10.1038/s41574-018-0020-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41574-018-0020-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing