Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Introduction of DNA enzyme for Egr-1 into tubulointerstitial fibroblasts by electroporation reduced interstitial α-smooth muscle actin expression and fibrosis in unilateral ureteral obstruction (UUO) rats

Abstract

The phenotypic alteration of interstitial fibroblasts into ‘myofibroblasts’, acquiring characteristics of both fibroblasts and smooth muscle cells is a key event in the formation of tubulointerstitial fibrosis. The up-regulation of the early growth response gene 1 (Egr-1) preceded the increased interstitial expression of α-smooth muscle actin (αSMA), a marker of phenotypic changes, in obstructed kidney, a model of interstitial fibrosis. To target Egr-1 expression in the interstitium of obstructed kidneys, we introduced a DNA enzyme for Egr-1 (ED5) or scrambled DNA (SCR) into interstitial fibroblasts by electroporation-mediated gene transfer. Northern blot analysis confirmed an increase in the cortical mRNA expression of Egr-1 in the obstructed kidneys from untreated or SCR-treated rats, while ED5 transfection blocked Egr-1 expression with a concomitant reduction in TGF-β, αSMA and type I collagen mRNA expression. Consequently, ED5 inhibited interstitial fibrosis. In conclusion, electroporation-mediated retrograde gene transfer can be an ideal vehicle into interstitial fibroblasts, and molecular intervention of Egr-1 in the interstitium may become a new therapeutic strategy for interstitial fibrosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Risdon R., Sloper J., de Vardener H. . Relationship between renal function and histologic changes found in renal-biopsy spcimens from patients with persistent glomerulonephritis Lancet 1968 2: 363 363

    Article  CAS  Google Scholar 

  2. Schainuck L.I., Striker G.E., Cutler R.E., Benditt E.P. . Structural–functional correlations in renal disease. II. The correlations Hum Pathol 1970 1: 631 631

    Article  CAS  Google Scholar 

  3. Eddy A.A. . Molecular insights into renal interstitial fibrosis J Am Soc Nephrol 1996 7: 2495 2495

    CAS  PubMed  Google Scholar 

  4. Alpers C., Hudkins K., Floege J., Johnson R. . Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury J Am Soc Nephrol 1994 5: 201 201

    CAS  PubMed  Google Scholar 

  5. Diamond J.R., Kees F.D., Ricardo S.D., Pruznak A., Eufemio M. . Early and persistent up-regulated expression of renal cortical osteopontin in experimental hydronephrosis Am J Pathol 1996 146: 1455 1455

    Google Scholar 

  6. Kliem V. et al. Mechanisms involved in the pathogenesis of tubulointerstitial fibrosis in 5/6-nephrectomized rats Kidney Int 1996 49: 666 666

    Article  CAS  Google Scholar 

  7. Sappino A., Schurch W., Gabbiani G. . Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations Lab Invest 1990 63: 144 144

    CAS  PubMed  Google Scholar 

  8. Skalli O. et al. A monoclonal antibody against alpha-smooth muscle actin: a new probe for smooth muscle differentiation J Cell Biol 1986 103: 2787 2787

    Article  CAS  Google Scholar 

  9. Skalli O., Vandekerckhove J., Gabbiani G. . Actin-isoform pattern as a marker of normal or pathological smooth-muscle and fibroblastic tissues Differentiation 1987 33: 232 232

    Article  CAS  Google Scholar 

  10. Vandekerckhove J., Weber K. . At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide J Mol Biol 1978 33: 783 783

    Article  Google Scholar 

  11. Hewitson T., Becker G. . Interstitial myofibroblasts in IgA glomerulonephritis Am J Nephrol 1995 15: 111 111

    Article  CAS  Google Scholar 

  12. Rupprecht H. et al. Expression of the transcriptional regulator Egr-1 in experimental glomerulonephritis: requirement for mesangial cell proliferation Kidney Int 1997 51: 694 694

    Article  CAS  Google Scholar 

  13. Gashler A., Sukhatme V. . Early growth response protein 1 (Egr-1): prototype of a zinc-finger family of transcription factors Prog Nucleic Acid Res Mol Biol 1995 50: 191 191

    Article  CAS  Google Scholar 

  14. Khachigian L., Collins T. . Inducible expression of Egr-1-dependent genes: a paradigm of transcriptional activation in vascular endothelium Circ Res 1997 81: 457 457

    Article  CAS  Google Scholar 

  15. Silverman E., Collins T. . Pathways of Egr-1-mediated gene transcription in vascular biology Am J Pathol 1999 154: 665 665

    Article  CAS  Google Scholar 

  16. Kim S. et al. Promoter sequences of the human transforming growth factor-β1 gene responsive to transforming growth factor-β1 autoinduction J Biol Chem 1989 264: 7041 7041

    CAS  PubMed  Google Scholar 

  17. Biesiada E., Razandi M., Levin E. . Egr-1 activates basic fibroblast growth factor transcription. Mechanistic implications for astrocyte proliferation J Biol Chem 1996 271: 18576 18576

    Article  CAS  Google Scholar 

  18. Khachigian L., Williams A., Collins T. . Interplay of Sp1 and Egr-1 in the proximal platelet-derived growth factor A-chain promoter in cultured vascular endothelial cells J Biol Chem 1995 270: 27679 27679

    Article  CAS  Google Scholar 

  19. Silverman E., Khachigian L., Lindner V., Williams A., Collins T. . Inducible PDGF A-chain transcription in smooth muscle cells is mediated by Egr-1 displacement of Sp1 and Sp3 Am J Physiol 1997 273: H1415 H1415

    CAS  PubMed  Google Scholar 

  20. Khachigian L., Lindner L., Williams A., Collins T. . Egr-1-induced endothelial gene expression: a common theme in vascular injury Science 1996 271: 1427 1427

    Article  CAS  Google Scholar 

  21. Maltzman J., Carmen J., Monroe J. . Transcriptional regulation of the ICAM-1 gene in antigen receptor- and phorbol ester-stimulated B lymphocytes: role for transcription factor EGR1 J Exp Med 1996 183: 1747 1747

    Article  CAS  Google Scholar 

  22. Maltzman J., Carman J., Monroe J. . Role of EGR1 in regulation of stimulus-dependent CD44 transcription in B lymphocytes Mol Cell Biol 1996 16: 2283 2283

    Article  CAS  Google Scholar 

  23. Alpers C.E. et al. Developmental patterns of PDGF B-chain PDGF-receptor and alpha-actin expression in human glomerulogenesis Kidney Int 1992 42: 390 390

    Article  CAS  Google Scholar 

  24. Border W., Noble N. . Transforming growth factor in tissue fibrosis N Engl J Med 1994 331: 1286 1286

    Article  CAS  Google Scholar 

  25. Yamamoto T., Noble N.A., Miller D.E., Border W.A. . Sustained expression of TGF-beta 1 underlies development of progressive kidney fibrosis Kidney Int 1994 45: 916 916

    Article  CAS  Google Scholar 

  26. Tsujie M. et al. Gene transfer targeting interstitial fibroblasts by the artificial viral envelope type hemagglutinating virus of Japan liposome method Kidney Int 2000 57: 1973 1973

    Article  CAS  Google Scholar 

  27. Isaka Y. et al. Introduction of transforming growth factor-beta 1 antisense oligodeoxynucleotides into renal interstitial fibroblasts blocks interstitial fibrosis in unilateral ureteral obstruction Kidney Int 2000 58: 1885 1885

    Article  CAS  Google Scholar 

  28. Tsujie M., Isaka Y., Nakamura H., Imai E., Hori M. . Electroporation mediated gene transfer that targets glomeruli J Am Soc Nephrol 2001 12: 949 949

    CAS  PubMed  Google Scholar 

  29. Santiago F. et al. New DNA enzyme targeting Egr-1 mRNA inhibits vascular smooth muscle proliferation and regrowth after injury Nat Med 1999 5: 1264 1264

    Article  CAS  Google Scholar 

  30. Alpers C.E., Hudkins K.L., Floege J., Johnson R.J. . Human renal cortical interstitial cells with some features of smooth muscle cells participate in tubulointerstitial and crescentic glomerular injury J Am Soc Nephrol 1994 5: 201 201

    CAS  PubMed  Google Scholar 

  31. Kramer B. et al. Characterization of a Krox-24/Egr-1-responsive element in the human tumor necrosis factor promoter Biochim Biophys Acta 1994 1219: 413 413

    Article  CAS  Google Scholar 

  32. Yan S. et al. Egr-1, a master switch coordinating upregulation of divergent gene families underlying ischemic stress Nat Med 2000 6: 1355 1355

    Article  CAS  Google Scholar 

  33. Imai E., Isaka Y. . Strategies of gene transfer to the kidney Kidney Int 1998 53: 264 264

    Article  CAS  Google Scholar 

  34. Fine L.G. . Gene transfer into the kidney: promise for unravelling disease mechanisms, limitations for human gene therapy Kidney Int 1996 49: 612 612

    Article  CAS  Google Scholar 

  35. Wanger R. . Gene inhibition using antisense oligodeoxynucleotides Nature 1994 372: 333 333

    Article  Google Scholar 

  36. Santoro S.W., Joyce G.F. . A general purpose RNA-cleaving DNA enzyme Proc Natl Acad Sci USA 1997 94: 4262 4262

    Article  CAS  Google Scholar 

  37. Chomczynski P., Sacchi N. . Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction Anal Biochem 1987 162: 156 156

    Article  CAS  Google Scholar 

  38. Maxwell P.H. et al. The interstitial response to renal injury: fibroblast-like cells show phenotypic changes and have reduced potential for erythropoietin gene expression Kidney Int 1997 52: 715 715

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, H., Isaka, Y., Tsujie, M. et al. Introduction of DNA enzyme for Egr-1 into tubulointerstitial fibroblasts by electroporation reduced interstitial α-smooth muscle actin expression and fibrosis in unilateral ureteral obstruction (UUO) rats. Gene Ther 9, 495–502 (2002). https://doi.org/10.1038/sj.gt.3301681

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.gt.3301681

Keywords

This article is cited by

Search

Quick links