Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Diastolic blood pressure is an important determinant of augmentation index and pulse wave velocity in young, healthy males

Abstract

Pulse wave velocity (PWV) and augmentation index are widely used measures of arterial stiffness. The purpose of this study was to evaluate the role of blood pressure as a determinant of both indices independent of potentially confounding factors including gender, age and cardiovascular disorders. A total of 77 young, healthy subjects were investigated under resting conditions. Augmentation index was derived by pulse wave analysis using carotid applanation tonometry. PWV was determined from pressure tracing over the carotid and femoral artery. The relations between stiffness markers and haemodynamic parameters were analysed by simple (r) and multiple (β) regression analysis. Using simple regression analysis, augmentation index was correlated to age (r=0.292, P=0.0105), diastolic blood pressure (DBP, r=0.483, P<0.0001), mean arterial blood pressure (MAP, r=0.381, P=0.0007), pulse pressure (r=−0.414, P=0.0002) and total peripheral resistance (r=0.266, P=0.0204). After multiple regression analysis, augmentation index remained significantly correlated only to DBP (β=0.347, P=0.0051). Using simple regression analysis, PWV was correlated to age (r=0.304, P=0.0067), systolic blood pressure (r=0.280, P=0.0129). DBP (r=0.455, P<0.0001), MAP (r=0.446, P<0.0001) and heart rate (r=0.348, P=0.0018). After multiple regression analysis, PWV remained correlated only to age (β=0.218, P=0.0422) and DBP (β=0.4105, P=0.0316). In summary, DBP is an important determinant of augmentation index and PWV in young, healthy males. Further studies are needed to characterize the impact of blood pressure on arterial stiffness in other populations including females and older subjects.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Kelly R, Hayward C, Avolio A, O’Rourke M . Noninvasive determination of age-related changes in the human arterial pulse. Circulation 1989; 80: 1652–1659.

    Article  CAS  PubMed  Google Scholar 

  2. O’Rourke M . Mechanical principles in arterial disease. Hypertension 1995; 26: 2–9.

    Article  PubMed  Google Scholar 

  3. Nichols WW, O’Rourke MF . McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles, 4th edn. Edward Arnold: London, 1998.

    Google Scholar 

  4. Bramwell JC, Hill AV . Velocity of transmission of the pulse wave and elasticity of arteries. Lancet 1922; 1: 891–892.

    Article  Google Scholar 

  5. Haynes FW, Ellis L, Weiss S . Pulse wave velocity and arterial elasticity in arterial hypertension, arteriosclerosis and related conditions. Am Heart J 1936; 11: 385–401.

    Article  Google Scholar 

  6. Laurent S et al. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension 2001; 37: 1236–1241.

    Article  CAS  PubMed  Google Scholar 

  7. Blacher J et al. Impact of aortic stiffness on survival in end-stage renal disease. Circulation 1999; 99: 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  8. Mitchell GF et al. Omapatrilat reduces pulse pressure and proximal aortic stiffness in patients with systolic hypertension: results of the conduit hemodynamics of omapatrilat international research study. Circulation 2002; 105: 2955–2961.

    Article  CAS  PubMed  Google Scholar 

  9. O’Rourke MF, Mancia G . Arterial stiffness. J Hypertens 1999; 17: 1–4.

    Article  PubMed  Google Scholar 

  10. Wilkinson IB, Cockcroft JR, Webb DJ . Pulse wave analysis and arterial stiffness. J Cardiovasc Pharmacol 1998; 32 (Suppl 3): S33–S37.

    CAS  PubMed  Google Scholar 

  11. Filipovsky J, Svobodova V, Pecen L . Reproducibility of radial pulse wave analysis in healthy subjects. J Hypertens 2000; 18: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  12. Hayward CS, Kelly RP . Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol 1997; 30: 1863–1871.

    Article  CAS  PubMed  Google Scholar 

  13. Smulyan H et al. Influence of body height on pulsatile arterial hemodynamic data. J Am Coll Cardiol 1998; 31: 1103–1109.

    Article  CAS  PubMed  Google Scholar 

  14. McGrath B, Liang YL, Kotsopoulos D, Cameron J . Impact of physical and physiological factors on arterial function. Clin Exp Pharmacol Physiol 2001; 28: 1104–1107.

    Article  CAS  PubMed  Google Scholar 

  15. Wilkinson IB et al. The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 2000; 525 (Part 1): 263–270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gatzka CD et al. Correction of carotid augmentation index for heart rate in elderly essential hypertensives ANBP2 Investigators. Australian Comparative Outcome Trial of Angiotensin-Converting Enzyme Inhibitor- and Diuretic-Based Treatment of Hypertension in the Elderly. Am J Hypertens 2001; 14 (6 Part 1): 573–577.

    Article  CAS  PubMed  Google Scholar 

  17. Lantelme P et al. Heart rate: an important confounder of pulse wave velocity assessment. Hypertension 2002; 39: 1083–1087.

    Article  CAS  PubMed  Google Scholar 

  18. Yasmin, Brown MJ . Similarities and differences between augmentation index and pulse wave velocity in the assessment of arterial stiffness. Q J Med 1999; 92: 595–600.

    Article  CAS  Google Scholar 

  19. Wilkinson IB et al. Pressure amplification explains why pulse pressure is unrelated to risk in young subjects. Hypertension 2001; 38: 1461–1466.

    Article  CAS  PubMed  Google Scholar 

  20. Kelly RP, Millasseau SC, Ritter JM, Chowienczyk PJ . Vasoactive drugs influence aortic augmentation index independently of pulse-wave velocity in healthy men. Hypertension 2001; 37: 1429–1433.

    Article  CAS  PubMed  Google Scholar 

  21. Cameron JD, McGrath BP, Dart AM . Use of radial artery applanation tonometry and a generalized transfer function to determine aortic pressure augmentation in subjects with treated hypertension. J Am Coll Cardiol 1998; 32: 1214–1220.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka H, DeSouza CA, Seals DR . Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol 1998; 18: 127–132.

    Article  CAS  PubMed  Google Scholar 

  23. London GM et al. Arterial wave reflections and survival in end-stage renal failure. Hypertension 2001; 38: 434–438.

    Article  CAS  PubMed  Google Scholar 

  24. Wilkinson IB et al. Increased augmentation index and systolic stress in type 1 diabetes mellitus. Q J Med 2000; 93: 441–448.

    Article  CAS  Google Scholar 

  25. Blacher J et al. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension 1999; 33: 1111–1117.

    Article  CAS  PubMed  Google Scholar 

  26. Sa Cunha R et al. Association between high heart rate and high arterial rigidity in normotensive and hypertensive subjects. J Hypertens 1997; 15 (12 Part 1): 1423–1430.

    Article  CAS  PubMed  Google Scholar 

  27. Alfie J, Waisman GD, Galarza CR, Camera MI . Contribution of stroke volume to the change in pulse pressure pattern with age. Hypertension 1999; 34 (4 Part 2): 808–812.

    Article  CAS  PubMed  Google Scholar 

  28. Ferrari AU . Modifications of the cardiovascular system with aging. Am J Geriatr Cardiol 2002; 11: 30–33.

    Article  PubMed  Google Scholar 

  29. Schafers RF et al. Influence of adrenoceptor and muscarinic receptor blockade on the cardiovascular effects of exogenous noradrenaline and of endogenous noradrenaline released by infused tyramine. Naunyn Schmiedebergs Arch Pharmacol 1997; 355: 239–249.

    Article  CAS  PubMed  Google Scholar 

  30. Schafers RF et al. Adrenoceptors mediating the cardiovascular and metabolic effects of alpha-methylnoradrenaline in humans. J Pharm Exp Ther 1999; 289: 918–925.

    CAS  Google Scholar 

  31. Northridge DB et al. Non-invasive determination of cardiac output by Doppler echocardiograhy and electrical bioimpedance. Br Heart J 1990; 63: 93–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. White SW et al. Impedance cardiography for cardiac output measurement: an evaluation of accuracy and limitations. Eur Heart J 1990; 11 (Suppl 1): 79–92.

    Article  PubMed  Google Scholar 

  33. Kubicek WG et al. Impedance cardiography as a noninvasive means to monitor cardiac function. J Assoc Adv Med Instrum 1970; 4: 79–84.

    CAS  PubMed  Google Scholar 

  34. Breithaupt-Grögler K, Ling M, Boudoulas H, Belz GG . Protective effect of chronic garlic intake on elastic properties of aorta in the elderly. Circulation 1997; 96: 2649–2655.

    Article  PubMed  Google Scholar 

  35. Kanda T, Nakamura E, Moritani T, Yamori Y . Arterial pulse wave velocity and risk factors for peripheral vascular disease. Eur J Appl Physiol 2000; 82: 1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nürnberger J et al. Augmentation index is associated with cardiovascular risk. J Hypertens 2002; 20: 1–8.

    Article  Google Scholar 

  37. Franklin SS et al. Does the relation of blood pressure to coronary heart disease risk change with aging? The Framingham Heart Study. Circulation 2001; 103: 1245–1249.

    Article  CAS  PubMed  Google Scholar 

  38. Khattar RS et al. Effect of aging on the prognostic significance of ambulatory systolic, diastolic, and pulse pressure in essential hypertension. Circulation 2001; 104: 783–789.

    Article  CAS  PubMed  Google Scholar 

  39. O’Rourke M . Arterial stiffness systolic blood pressure and logical treatment of arterial hypertension. Hypertension 1990; 15: 339–347.

    Article  PubMed  Google Scholar 

  40. Giannattasio C et al. Evaluation of arterial compliance in humans. Clin Exp Hypertens 1996; 18: 347–362.

    Article  CAS  PubMed  Google Scholar 

  41. Shadwick RE . Mechanical design in arteries. J Exp Biol 1999; 202 (Part 23): 3305–3313.

    CAS  PubMed  Google Scholar 

  42. O’Rourke MF, Vlachopoulos C, Graham RM . Spurious systolic hypertension in youth. Vasc Med 2000; 5: 141–145.

    Article  PubMed  Google Scholar 

  43. Marchais SJ et al. Wave reflections and cardiac hypertrophy in chronic uremia. Influence of body size. Hypertension 1993; 22: 876–883.

    Article  CAS  PubMed  Google Scholar 

  44. Wilkinson IB et al. Increased central pulse pressure and augmentation index in subjects with hypercholesterolemia. J Am Coll Cardiol 2002; 39: 1005–1011.

    Article  PubMed  Google Scholar 

  45. Mangoni AA et al. Heart rate-dependence of arterial distensibility in vivo. J Hypertens 1996; 14: 897–901.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R F Schäfers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nürnberger, J., Dammer, S., Opazo Saez, A. et al. Diastolic blood pressure is an important determinant of augmentation index and pulse wave velocity in young, healthy males. J Hum Hypertens 17, 153–158 (2003). https://doi.org/10.1038/sj.jhh.1001526

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.jhh.1001526

Keywords

This article is cited by

Search

Quick links