Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Insulin Aspart

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Insulin aspart is a novel rapid-acting insulin analogue with improved subcutaneous absorption properties when compared with soluble human insulin. Pharmacokinetic studies show an absorption profile with a time to reach peak concentration (tmax) about half that of human insulin, a peak plasma drug concentration (Cmax) approximately twice as high and shorter residence time. The potency and bio-availability of insulin aspart are similar to those of human insulin.

The pharmacokinetics of insulin aspart have been studied in healthy Caucasian and Asian-Japanese volunteers, in patients with type 1 and 2 diabetes mellitus, and in children with diabetes, with both pre- and postprandial administration and during continuous subcutaneous insulin infusion (CSII). The pharmacokinetic profile was similar to that of another rapid-acting insulin analogue, insulin lispro, on the basis of published information for that agent.

Pharmacodynamic studies show a smaller excursion of postprandial glucose with insulin aspart injected subcutaneously just before the meal compared with soluble human insulin injected 30 minutes before the meal in patients with type 1 diabetes mellitus, and an equivalent control in patients with type 2 diabetes displaying residual insulin production. In a treatment study, glucose excursions evaluated from 24-hour glucose profiles showed less variability with insulin aspart compared with human insulin. Adverse events, including hypoglycaemia-induced ventricular repolarisation and hypoglycaemic threshold and awareness, did not differ between insulin aspart and human insulin. The available data suggest that subcutaneous injections of insulin aspart just before meals better mimic the endogenous insulin profile in blood compared with human insulin, resulting in improved glucose control in a meal-related insulin regimen.

This review summarises the clinical pharmacokinetics and pharmacodynamics of insulin aspart in relation to human insulin and insulin lispro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Table I
Table II
Table III
Fig. 3
Fig. 4
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Binder C. Absorption of injected insulin. Acta Pharmacol Toxicol 1969; 27 Suppl. 2: 1–84

    Article  Google Scholar 

  2. Binder C, Lauritzen T, Faber O, et al. Insulin pharmacokinetics. Diabetes Care 1984; 1984: 188–99

    Article  Google Scholar 

  3. Owens DR. Human insulin. In: DR Owens, editor. Clinical pharmacological studies in normal man. Lancaster: MTP Press Limited, 1986

    Google Scholar 

  4. Home PD. Insulin therapy. In: Alberti KGMM, Zimmet P, DeFronzo RA, editor. The international textbook of diabetes. 2nd ed. Chichester: Wiley, 1996: 899–928

    Google Scholar 

  5. Blundell T, Dodson G, Hodgkin D, et al. Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem 1972; 26: 279–402

    Article  CAS  Google Scholar 

  6. Brange J, Ribel U, Hansen JF, et al. Monomeric insulins obtained by protein engineering and their medical implications. Nature 1988; 333: 679–82

    Article  PubMed  CAS  Google Scholar 

  7. Kang S, Brange J, Burch A, et al. Subcutaneous insulin absorption explained by insulin’s physicochemical properties. Evidence from absorption studies of soluble human insulin and insulin analogues in humans. Diabetes Care 1991; 14(11): 942–8

    Article  PubMed  CAS  Google Scholar 

  8. Home PD, Lindholm A, Riis A, Insulin Aspart Study Group. Insulin aspart versus human insulin in the management of long-term blood glucose control in Type 1 diabetes: a randomized controlled trial. Diabet Med 2000; 17: 762–70

    Article  PubMed  CAS  Google Scholar 

  9. Raskin P, Riis A, Guthrie RA, et al. Use of insulin aspart, a fast-acting insulin analog, as the mealtime insulin in the management of patients with type 1 diabetes. Diabetes Care 2000; 23: 583–8

    Article  PubMed  CAS  Google Scholar 

  10. Plum A, Agersø H, Andersen L. Pharmacokinetics of the rapid-acting insulin analog, insulin aspart, in rats, dogs, and pigs, and pharmacodynamics of insulin aspart in pigs. Drug Metab Dispos 1999; 28: 155–60

    Google Scholar 

  11. Kang S, Creagh FM, Peters JR, et al. Comparison of subcutaneous soluble human insulin and insulin analogues (AspB9, GluB27; AspB10; AspB28) on meal related plasma glucose excursions in Type 1 diabetic subjects. Diabetes Care 1991; 14: 571–7

    Article  PubMed  CAS  Google Scholar 

  12. Lutterman JA, Pijpers E, Netten PM, et al. Glycaemic control in IDDM patients during one day with injection of human insulin or the insulin analogues insulin X14 and insulin X14 (+Zn). Front Insulin Pharmacol 1993: 102-9

  13. Wiefels K, Kuglin B, Hübinger A, et al. Insulin kinetics and dynamics in insulin-dependent diabetic patients after injection of human insulin or the insulin analogues X14 and X14 + Zn. Front Insulin Pharmacol 1993: 97-101

  14. Heinemann L, Heise T, Jørgensen LN, et al. Action profile of the rapid acting insulin analogue: human insulin B28 Asp. Diabet Med 1993; 10: 535–9

    Article  PubMed  CAS  Google Scholar 

  15. Brange J, Vølund A. Insulin analogs with improved pharmaco-kinetic profiles. Adv Drug Deliv Rev 1999; 35: 307–35

    Article  PubMed  CAS  Google Scholar 

  16. Torlone E, Pampanelli S, Lalli C, et al. Effects of the short-acting insulin analog [Lys(B28), Pro(B29)] on postprandial blood glucose control in IDDM. Diabetes Care 1996; 19: 945–52

    Article  PubMed  CAS  Google Scholar 

  17. Kang S, Brange J, Burch A, et al. Absorption kinetics and action profiles of subcutaneously administered insulin analogues (AspB9, GluB27, AspB10, AspB28) in healthy subjects. Diabetes Care 1991; 14: 1057–65

    Article  PubMed  CAS  Google Scholar 

  18. Home PD, Barriocanal LA, Lindholm A. Comparative pharma-cokinetics and pharmacodynamics of the novel rapid-acting insulin analogue, insulin aspart, in healthy volunteers. Eur J Clin Pharmacol 1999; 55: 199–203

    Article  PubMed  CAS  Google Scholar 

  19. Kaku K, Urae A, Irie S, et al. Pharmacokinetics and pharmaco-dynamics of insulin aspart, a rapid-acting analog of human insulin, in healthy Japanese volunteers. Diabet Res Clin Pract 2000; 49: 119–26

    Article  CAS  Google Scholar 

  20. Jacobsen LV. A bioequivalence study on insulin aspart. Novo Nordisk, 1998. (Data on file)

  21. Lindholm A, Susaki T, Edwards A, et al. Dose dependency of insulin aspart in healthy Caucasians and Japanese [abstract]. Diabetes 2001; 50 Suppl. 2: A441

    Google Scholar 

  22. Lindholm A, McEwen J, Riis A. Improved postprandial glycemic control with insulin aspart. Diabetes Care 1999; 22: 801–5

    Article  PubMed  CAS  Google Scholar 

  23. Rosenfalck AM, Thorsby P, Kjems L, et al. Improved postprandial glycaemic control with insulin aspart in type 2 diabetic patients treated with insulin. Acta Diabetol 2000; 37: 41–6

    Article  PubMed  CAS  Google Scholar 

  24. Mortensen H, Olsen B, Lindholm A. Pharmacokinetics of a rapid-acting human insulin analogue, insulin aspart, in children and adolescents with Type 1 diabetes. Eur J Pediatr 2000; 159: 483–8

    Article  PubMed  CAS  Google Scholar 

  25. Halberg IB, Jacobsen LV, Dahl UL. A study on self-mixing insulin aspart with nph insulin in the syringe before injection [abstract]. Diabetes 1999; 48 Suppl. 1: A104

    Google Scholar 

  26. Brunner GA, Hirschberger S, Sendlhofer G, et al. Post-prandial administration of the insulin analogue insulin aspart in patients with type 1 diabetes mellitus. Diabet Med 2000; 17: 371–5

    Article  PubMed  CAS  Google Scholar 

  27. Home PD, Lindholm A, Hylleberg B, et al. Improved glycaemic control with insulin aspart: a multicentre randomized doubleblind cross-over trial in type 1 diabetes mellitus. Diabetes Care 1998; 21: 1904–7

    Article  PubMed  CAS  Google Scholar 

  28. Bode B, Strange P. Efficacy, safety and pump compatibility of insulin aspart used in continuous subcutaneous insulin infusion therapy in patients with type 1 diabetes. Diabetes Care 2001; 24: 69–72

    Article  PubMed  CAS  Google Scholar 

  29. Kang S, Creagh FM, Ara J, et al. Insulin analogues and human insulin: near-equivalent in vivo biological activity in healthy males in spite of widely different in vitro potencies [abstract]. Diabetes 1991; 40: 243A

    Google Scholar 

  30. Heinemann L, Kapitza C, Starke AAR, et al. Time-action profile of the insulin analogue B28Asp. Diabet Med 1996; 13: 683–4

    Article  PubMed  CAS  Google Scholar 

  31. Mudaliar SR, Lindberg FA, Joyce M, et al. Insulin aspart (B28 Asp-insulin): a fast-acting analog of human insulin. Diabetes Care 1999; 22: 1501–6

    Article  PubMed  CAS  Google Scholar 

  32. Heinemann L, Weyer C, Rauhaus S, et al. Variability of the metabolic effect of soluble insulin and the rapid acting insulin analogue insulin aspart. Diabetes Care 1998; 21: 1910–4

    Article  PubMed  CAS  Google Scholar 

  33. Frier BM, Ewing FME, Lindholm A, et al. Symptomatic and counterregulatory hormonal responses to acute hypoglycaemia induced by insulin aspart and soluble insulin in type 1 diabetes. Diab Metab Res Rev 2000; 16: 262–8

    Article  CAS  Google Scholar 

  34. Harris ND, Robinson R, Ireland RH, et al. Comparative effects of human soluble insulin and the new insulin analogue, insulin aspart upon ventricular repolarization [abstract]. Diabetes 1999; 48 Suppl. 1: A114

    Google Scholar 

  35. Gammeltoft S, Hansen BF, Dideriksen LH, et al. Insulin aspart: a novel rapid-acting human insulin analogue. Exp Opin Invest Drugs 1999; 8: 1431–41

    Article  CAS  Google Scholar 

  36. Drejer K. The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diab Metab Rev 1992; 8: 259–86

    Article  CAS  Google Scholar 

  37. Kurtzhals P, Schäffer L, Sørensen A, et al. Correlations of receptor binding and metabolic and mitogenic potencies of insulin analogs designed for clinical use. Diabetes 2000; 49: 999–1005

    Article  PubMed  CAS  Google Scholar 

  38. Andersen L, Vølund A, Olsen KJ, et al. Validity and use of a non-parallel insulin assay for pharmacokinetic studies of a rapid-acting insulin analog, insulin aspart. J Immunoassay. In press

  39. Andersen L, Jørgensen PN, Jensen LB, et al. A new insulin immunoassay specific for the rapid-acting insulin analogue, insulin aspart, suitable for bioavailability, bioequivalence and pharmacokinetic studies. Clin Biochem 2000; 33: 627–33

    Article  PubMed  CAS  Google Scholar 

  40. Woodworth JR, Howey DC, Bowsher RR, et al. Comparative pharmacokinetics and glycodynamics of two human insulin mixtures. Diabetes Care 1994; 17: 366–71

    Article  PubMed  CAS  Google Scholar 

  41. Heinemann L, Ampudia-Blasco FJ. Glucose clamps with the Biostator: A critical appraisal. Horm Metab Res 1994; 26: 579–83

    Article  PubMed  CAS  Google Scholar 

  42. DeFronzo RA, Tobin JD, Andres R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 1979; 237: E214–23

    PubMed  CAS  Google Scholar 

  43. Plum A, Larsen PS, Larsen UD, et al. Determination of in vitro plasma protein binding of insulin aspart and insulin detemir by equilibrium dialysis [abstract]. Diabetologia 1999; 42 Suppl. 1: A236

    Google Scholar 

  44. Duckworth WC. Insulin degradation: mechanisms, products, and significance. Endocrine Rev 1988; 9: 319–44

    Article  CAS  Google Scholar 

  45. Striffler JS. Insulin clearance and microsomal glutathione-insulin transhydrogenase in perfused livers of fed and fasted rats. Diabetes Metab 1987; 13: 582–90

    CAS  Google Scholar 

  46. Thomas JH, Jenkins CDG, Davey PG, et al. The binding and degradation of 125I-labelled insulin by rat kidney brush-border membranes. Int J Biochem 1983; 15: 329–36

    Article  CAS  Google Scholar 

  47. Lee VHL. Enzymatic barriers to peptide and protein absorption. Crit Rev Ther Drug Carrier Syst 1988; 5: 69–97

    PubMed  CAS  Google Scholar 

  48. Clot JP. Characterization of insulin degradation products generated in liver endosomes: in vivo and in vitro studies [abstract]. FASEB J 1990; 4: A2115

    Google Scholar 

  49. Lauritzen T, Faber OK, Binder C. Variation in 125I-insulin absorption and blood glucose concentration. Diabetologia 1979; 17: 291–5

    Article  PubMed  CAS  Google Scholar 

  50. de Meijer PH, Lutterman JA, van Lier HJ, et al. The variability of the absorption of subcutaneously injected insulin: effect of injection technique and relation with brittleness. Diabet Med 1990; 7: 499–505

    Article  PubMed  Google Scholar 

  51. Kolendorf K, Bojsen J, Deckert T. Clinical factors influencing the absorption of 125I-NPH insulin in diabetic patients. Horm Metab Res 1983; 15: 274–8

    Article  PubMed  CAS  Google Scholar 

  52. Lindholm A, Home PD, Jacobsen LV. A comparison of pharmacokinetic and pharmacodynamic relationship of insulin aspart in normal subjects and people with diabetes. Diabetes 1999; 48 Suppl. 1: A357–8

    Google Scholar 

  53. Clauson PG, Linde B. Absorption of rapid-acting insulin in obese and non-obese NIDDM patients. Diabetes Care 1995; 18: 986–91

    Article  PubMed  CAS  Google Scholar 

  54. Plum A. Pharmacokinetic studies of insulin aspart in rat and pig. Novo Nordisk, 1999. (Data on file)

  55. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys(B28), Pro(B29)]-human insulin: a rapidly absorbed analogue of human insulin. Diabetes 1994; 43: 396–402

    Article  PubMed  CAS  Google Scholar 

  56. Howey DC, Bowsher RR, Brunelle RL, et al. [Lys (B28), Pro(B29)]-human insulin: effect of injection time on postprandial glycemia. Clin Pharmacol Ther 1995; 58: 459–69

    Article  PubMed  CAS  Google Scholar 

  57. Heinemann L, Heise T, Wahl LCH, et al. Prandial glycaemia after a carbohydrate-rich meal in type 1 diabetic patients: using the rapid acting insulin analogue [lys(B28), Pro(B29] human insulin. Diabet Med 1996; 13: 625–9

    Article  PubMed  CAS  Google Scholar 

  58. Wilde M, McTavish D. Insulin lispro: a review of its pharmacological properties and therapeutic use in the management of diabetes mellitus. Drugs 1997; 54: 597–614

    Article  PubMed  CAS  Google Scholar 

  59. Jacobson LV. A double-blind trial to investigate intra- and inter-individual variability in action profiles of insulin aspart. Novo Nordisk, 1998. (Data on file)

  60. Marques JL, Georges E, Peacey SR, et al. Altered ventricular repolarisation during hypoglycaemia in patients with diabetes. Diabet Med 1997; 8: 648–54

    Article  Google Scholar 

  61. Committee for Propriety Medicinal Products, The European Agency for the Evaluation of Medical Products. The assessment of the potential for QT interval prolongation by non-cardiovascular medicinal products. London: European Agency for the Evaluation of Medical Products, 1996. CPMP/986/96

  62. Tattersall RB, Gill GV. Unexplained death of Type 1 diabetic patients. Diabet Med 1991; 8: 49–58

    Article  PubMed  CAS  Google Scholar 

  63. Tamas G, Marre M, Dedov I, et al. Improved glycaemic control with insulin aspart compared to human insulin using algorithm-driven dose optimization [abstract]. Diabetes 2000; 40 Suppl. 1: A127

    Google Scholar 

  64. Gale EAM. A randomized, controlled trial comparing insulin lispro with human soluble insulin in patients with Type 1 diabetes on intensified insulin therapy. Diabet Med 2000; 17: 209–14

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are employees of Novo Nordisk A/S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Lindholm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lindholm, A., Jacobsen, L.V. Clinical Pharmacokinetics and Pharmacodynamics of Insulin Aspart. Clin Pharmacokinet 40, 641–659 (2001). https://doi.org/10.2165/00003088-200140090-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200140090-00002

Keywords

Navigation