Skip to main content

First Phase Insulin Secretion and Type 2 Diabetes

Buy Article:

$68.00 + tax (Refund Policy)

Type 2 diabetes (T2D) is a metabolic disorder characterised by the inability of β-cells to secrete enough insulin to maintain glucose homeostasis. Pancreatic β-cells secrete insulin in a biphasic manner, first and second phase insulin secretion, and loss of first phase insulin secretion is an independent predictor of T2D onset. Restoration of first phase insulin secretion has been shown to improve blood glucose in T2D by suppressing hepatic glucose production and priming insulin sensitive tissue to more readily take up glucose and has thus prompted numerous studies into its regulation. First phase insulin secretion is initiated primarily by the classical triggering pathway, a complex system comprised of multiple stimulatory signals. Recent studies have identified a number of novel regulatory factors that are crucial for first phase insulin secretion and glucose homeostasis. These include, among others, hypoxia inducible factor 1α, von Hippel-Lindau, factor inhibiting HIF, nicotinamide phospho-ribosyl-transferase, and the sirtuin family. This review will outline how first phase insulin secretion is initiated and detail some of the recent findings in its regulation.

Keywords: Aryl hydrocarbon nuclear translocator; glucose homeostasis; hypoxia inducible factor-1α; insulin secretion; regulatory genes; type 2 diabetes

Document Type: Research Article

Publication date: 01 January 2013

More about this publication?
  • Current Molecular Medicine is an interdisciplinary journal focused on providing the readership with current and comprehensive reviews on fundamental molecular mechanisms of disease pathogenesis, the development of molecular-diagnosis and/or novel approaches to rational treatment. The reviews should be of significant interest to basic researchers and clinical investigators in molecular medicine. Periodically the journal will invite guest editors to devote an issue on a basic research area that shows promise to advance our understanding of the molecular mechanism(s) of a disease or has potential for clinical applications.
  • Editorial Board
  • Information for Authors
  • Subscribe to this Title
  • Ingenta Connect is not responsible for the content or availability of external websites
  • Access Key
  • Free content
  • Partial Free content
  • New content
  • Open access content
  • Partial Open access content
  • Subscribed content
  • Partial Subscribed content
  • Free trial content